215 research outputs found

    Feedforward data-aided phase noise estimation from a DCT basis expansion

    Get PDF
    This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion of discrete cosine transform (DCT) basis functions containing only a few terms. We propose a feedforward algorithm that estimates the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting (linearized) mean-square phase estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise independent contribution, that results front the phase noise modeling error. We investigate the effect of the symbol sequence length, the pilot symbol positions, the number of pilot symbols, and the number of estimated DCT coefficients it the estimation accuracy and on the corresponding bit error rate (PER). We propose a pilot symbol configuration allowing to estimate any number of DCT coefficients not exceeding the number of pilot Symbols, providing a considerable Performance improvement as compared to other pilot symbol configurations. For large block sizes, the DCT-based estimation algorithm substantially outperforms algorithms that estimate only the time-average or the linear trend of the carrier phase. Copyright (C) 2009 J. Bhatti and M. Moeneclaey

    Feedforward pilot-aided carrier synchronization using a DCT basis expansion

    Get PDF
    This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion of Discrete Cosine-Transform (DCT) basis functions containing only a few terms. We propose a feedforward algorithm that estimates the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting (linearized) mean-square phase estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise-independent contribution that results from the phase noise modeling error. We investigate the effect of the symbol sequence length and the number of estimated DCT coefficients on the estimation accuracy and on the corresponding bit error rate (BER). We propose a pilot symbol configuration allowing to estimate any number of DCT coefficients not exceeding the number of pilot symbols. For large block sizes, the DCT-based estimation algorithm substantially outperforms algorithms that estimate only the time-average or the linear trend of the carrier phase

    Estimation of phase noise in oscillators with colored noise sources

    Get PDF
    In this letter we study the design of algorithms for estimation of phase noise (PN) with colored noise sources. A soft-input maximum a posteriori PN estimator and a modified soft-input extended Kalman smoother are proposed. The performance of the proposed algorithms are compared against those studied in the literature, in terms of mean square error of PN estimation, and symbol error rate of the considered communication system. The comparisons show that considerable performance gains can be achieved by designing estimators that employ correct knowledge of the PN statistics

    Pilot-aided carrier synchronization using an approximate DCT-based phase noise model

    Get PDF
    This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion of DCT basis functions containing only a few terms. We propose an algorithm that estimates the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting (linearized) mean-square estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise-independent contribution that results from the phase noise modeling error. Performance can be optimized by a proper selection of the symbol block length and of the number of DCT coefficients to be estimated. For large block sizes, considerable performance improvement is found as compared to the case where only the time-average of the carrier phase is estimated

    Performance analysis of iterative decision-directed phase noise estimation

    Get PDF
    This contribution deals with estimation and compensation of phase noise in single-carrier digital communications. We present an iterative feedforward decision-directed phase noise estimation algorithm, that is based on approximating the phase noise process by an expansion of DCT basis functions containing only a few terms. An extension to the estimation algorithm is proposed, improving the performance in terms of the mean-square error. We demonstrate that the resulting (linearized) mean-square estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise-independent contribution that results from the phase noise modeling error. The phase estimate that yields the lowest possible mean-square error is obtained, assuming knowledge of the phase noise statistics at the receiver

    Optimization of pilot-aided DCT-based phase noise estimation

    Get PDF
    The presented work addresses the issue of phase noise estimation for pilot-aided burst-mode transmission in digital communication systems. We propose to estimate the phase noise from a truncated discrete-cosine transform (DCT) expansion model. The key idea is to reconstruct the low-pass phase noise process via only a small number N of DCT coefficients of the phase expansion. An evident question that arises is how to choose N. Based on a few valid approximations, we derive an analytical expression of the bit-error rate (BER) degradation in the presence of residual phase noise, which allows us to determine the value of N that yields the minimum BER degradation

    Effect of Synchronizing Coordinated Base Stations on Phase Noise Estimation

    Get PDF
    In this paper, we study the problem of oscillator phase noise (PN) estimation in coordinated multi-point (CoMP) transmission systems. Specifically, we investigate the effect of phase synchronization between coordinated base stations (BSs) on PN estimation at the user receiver (downlink channel). In this respect, the Bayesian Cram\'er-Rao bound for PN estimation is derived which is a function of the level of phase synchronization between the coordinated BSs. Results show that quality of BS synchronization has a significant effect on the PN estimation

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    Optimal and Approximate Methods for Detection of Uncoded Data with Carrier Phase Noise

    Get PDF
    Previous results in the literature have shown that derivation of the optimum \textit{maximum-likelihood} (ML) receiver for \textit{symbol-by-symbol} (SBS) detection of an uncoded data sequence in the presence of \textit{random phase noise} is an intractable problem, since it involves the computation of the conditional \textit{probability distribution function} (PDF) of the phase noise process. In this paper, we seek to minimize \textit{symbol error probability} (SEP), which is achieved by SBS detection of the sequence based on all received signals. We show that the ML detector for this problem can be formulated as a weighted sum of central moments of the conditional PDF of phase noise. Given that the central moments of the conditional PDF of phase noise can be estimated, this new optimal structure is tractable with respect to the previously known optimal ML receiver. Furthermore, based on the new receiver structure, we propose a simple approximate method for SBS detection and investigate its scope and applicability. Simulation results demonstrate that SEP performance close to optimality can be obtained through the proposed method for scenarios of low phase noise variance and low \textit{signal-to-noise ratio} (SNR)

    Design and analysis of a high-rate acoustic link for underwater video transmission

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2004.Includes bibliographical references (leaves 74-75).A high bit rate acoustic link for underwater video transmission is examined. Currently, encoding standards support video transmission at bit rates as low as 64 kbps. While this rate is still above the limit of commercially available acoustic modems, prototype acoustic modems based on phase coherent modulation/detection have demonstrated successful transmission at 30 kbps over a deep water channel. The key to bridging the remaining gap between the bit-rate needed for video transmission and that supported by the acoustic channel lies in two approaches: use of efficient image/video compression algorithms and use of high-level bandwidth-efficient modulation methods. An experimental system, based on discrete cosine transform (DCT) and Huffman entropy coding for image compression, and variable rate M-ary quadrature amplitude modulation (QAM) was implemented. Phase-coherent equalization is accomplished by joint operation of a decision feedback equalizer (DFE) and a second order phase locked loop (PLL). System performance is demonstrated experimentally, using transmission rate of 25000 symbols/sec at a carrier frequency of 75 kHz over a 10 m vertical path.(cont.) Excellent results were obtained, thus demonstrating bit rates as high as 150 kbps, which are sufficient for real-time transmission of compressed video. As an alternative to conventional QAM signaling, whose high-level constellations are sensitive to phase distortions induced by the channel, M-ary differential amplitude and phase shift keying (DAPSK) was used. DAPSK does not require explicit carrier phase synchronization at the receiver, but instead relies on simple differentially coherent detection. Receiver processing includes a linear equalizer whose coefficients are adjusted using a modified linear least square (LMS) algorithm. Simulation results confirm good performance of the differentially coherent equalization scheme employed.by Konstantinos Pelekanakis.S.M
    • …
    corecore