1,227 research outputs found

    A Study on the Automatic Ship Control Based on Adaptive Neural Networks

    Get PDF
    Recently, dynamic models of marine ships are often required to design advanced control systems. In practice, the dynamics of marine ships are highly nonlinear and are affected by highly nonlinear, uncertain external disturbances. This results in parametric and structural uncertainties in the dynamic model, and requires the need for advanced robust control techniques. There are two fundamental control approaches to consider the uncertainty in the dynamic model: robust control and adaptive control. The robust control approach consists of designing a controller with a fixed structure that yields an acceptable performance over the full range of process variations. On the other hand, the adaptive control approach is to design a controller that can adapt itself to the process uncertainties in such a way that adequate control performance is guaranteed. In adaptive control, one of the common assumptions is that the dynamic model is linearly parameterizable with a fixed dynamic structure. Based on this assumption, unknown or slowly varying parameters are found adaptively. However, structural uncertainty is not considered in the existing control techniques. To cope with the nonlinear and uncertain natures of the controlled ships, an adaptive neural network (NN) control technique is developed in this thesis. The developed neural network controller (NNC) is based on the adaptive neural network by adaptive interaction (ANNAI). To enhance the adaptability of the NNC, an algorithm for automatic selection of its parameters at every control cycle is introduced. The proposed ANNAI controller is then modified and applied to some ship control problems. Firstly, an ANNAI-based heading control system for ship is proposed. The performance of the ANNAI-based heading control system in course-keeping and turning control is simulated on a mathematical ship model using computer. For comparison, a NN heading control system using conventional backpropagation (BP) training methods is also designed and simulated in similar situations. The improvements of ANNAI-based heading control system compared to the conventional BP one are discussed. Secondly, an adaptive ANNAI-based track control system for ship is developed by upgrading the proposed ANNAI controller and combining with Line-of-Sight (LOS) guidance algorithm. The off-track distance from ship position to the intended track is included in learning process of the ANNAI controller. This modification results in an adaptive NN track control system which can adapt with the unpredictable change of external disturbances. The performance of the ANNAI-based track control system is then demonstrated by computer simulations under the influence of external disturbances. Thirdly, another application of the ANNAI controller is presented. The ANNAI controller is modified to control ship heading and speed in low-speed maneuvering of ship. Being combined with a proposed berthing guidance algorithm, the ANNAI controller becomes an automatic berthing control system. The computer simulations using model of a container ship are carried out and shows good performance. Lastly, a hybrid neural adaptive controller which is independent of the exact mathematical model of ship is designed for dynamic positioning (DP) control. The ANNAI controllers are used in parallel with a conventional proportional-derivative (PD) controller to adaptively compensate for the environmental effects and minimize positioning as well as tracking error. The control law is simulated on a multi-purpose supply ship. The results are found to be encouraging and show the potential advantages of the neural-control scheme.1. Introduction = 1 1.1 Background and Motivations = 1 1.1.1 The History of Automatic Ship Control = 1 1.1.2 The Intelligent Control Systems = 2 1.2 Objectives and Summaries = 6 1.3 Original Distributions and Major Achievements = 7 1.4 Thesis Organization = 8 2. Adaptive Neural Network by Adaptive Interaction = 9 2.1 Introduction = 9 2.2 Adaptive Neural Network by Adaptive Interaction = 11 2.2.1 Direct Neural Network Control Applications = 11 2.2.2 Description of the ANNAI Controller = 13 2.3 Training Method of the ANNAI Controller = 17 2.3.1 Intensive BP Training = 17 2.3.2 Moderate BP Training = 17 2.3.3 Training Method of the ANNAI Controller = 18 3. ANNAI-based Heading Control System = 21 3.1 Introduction = 21 3.2 Heading Control System = 22 3.3 Simulation Results = 26 3.3.1 Fixed Values of n and = 28 3.3.2 With adaptation of n and r = 33 3.4 Conclusion = 39 4. ANNAI-based Track Control System = 41 4.1 Introduction = 41 4.2 Track Control System = 42 4.3 Simulation Results = 48 4.3.1 Modules for Guidance using MATLAB = 48 4.3.2 M-Maps Toolbox for MATLAB = 49 4.3.3 Ship Model = 50 4.3.4 External Disturbances and Noise = 50 4.3.5 Simulation Results = 51 4.4 Conclusion = 55 5. ANNAI-based Berthing Control System = 57 5.1 Introduction = 57 5.2 Berthing Control System = 58 5.2.1 Control of Ship Heading = 59 5.2.2 Control of Ship Speed = 61 5.2.3 Berthing Guidance Algorithm = 63 5.3 Simulation Results = 66 5.3.1 Simulation Setup = 66 5.3.2 Simulation Results and Discussions = 67 5.4 Conclusion = 79 6. ANNAI-based Dynamic Positioning System = 80 6.1 Introduction = 80 6.2 Dynamic Positioning System = 81 6.2.1 Station-keeping Control = 82 6.2.2 Low-speed Maneuvering Control = 86 6.3 Simulation Results = 88 6.3.1 Station-keeping = 89 6.3.2 Low-speed Maneuvering = 92 6.4 Conclusion = 98 7. Conclusions and Recommendations = 100 7.1 Conclusion = 100 7.1.1 ANNAI Controller = 100 7.1.2 Heading Control System = 101 7.1.3 Track Control System = 101 7.1.4 Berthing Control System = 102 7.1.5 Dynamic Positioning System = 102 7.2 Recommendations for Future Research = 103 References = 104 Appendixes A = 112 Appendixes B = 11

    On Neural Network Identification for Low-Speed Ship Maneuvering Model

    Full text link
    Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts - an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the "standard" RNN, and the random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.Comment: 13 pages, 7 figures, submitted to Journal of Marine Science and Technology for peer-revie

    Comparison of path following in ships using modern and traditional controllers

    Full text link
    Vessel navigation is difficult in restricted waterways and in the presence of static and dynamic obstacles. This difficulty can be attributed to the high-level decisions taken by humans during these maneuvers, which is evident from the fact that 85% of the reported marine accidents are traced back to human errors. Artificial intelligence-based methods offer us a way to eliminate human intervention in vessel navigation. Newer methods like Deep Reinforcement Learning (DRL) can optimize multiple objectives like path following and collision avoidance at the same time while being computationally cheaper to implement in comparison to traditional approaches. Before addressing the challenge of collision avoidance along with path following, the performance of DRL-based controllers on the path following task alone must be established. Therefore, this study trains a DRL agent using Proximal Policy Optimization (PPO) algorithm and tests it against a traditional PD controller guided by an Integral Line of Sight (ILOS) guidance system. The Krisco Container Ship (KCS) is chosen to test the different controllers. The ship dynamics are mathematically simulated using the Maneuvering Modelling Group (MMG) model developed by the Japanese. The simulation environment is used to train the deep reinforcement learning-based controller and is also used to tune the gains of the traditional PD controller. The effectiveness of the controllers in the presence of wind is also investigated.Comment: Proceedings of the Sixth International Conference in Ocean Engineering (ICOE2023

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    855-863Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Collision probability reduction method for tracking control in automatic docking/berthing using reinforcement learning

    Get PDF
    Automation of berthing maneuvers in shipping is a pressing issue as the berthing maneuver is one of the most stressful tasks seafarers undertake. Berthing control problems are often tackled by tracking a predefined trajectory or path. Maintaining a tracking error of zero under an uncertain environment is impossible; the tracking controller is nonetheless required to bring vessels close to desired berths. The tracking controller must prioritize the avoidance of tracking errors that may cause collisions with obstacles. This paper proposes a training method based on reinforcement learning for a trajectory tracking controller that reduces the probability of collisions with static obstacles. Via numerical simulations, we show that the proposed method reduces the probability of collisions during berthing maneuvers. Furthermore, this paper shows the tracking performance in a model experiment.The version of record of this article, first published in Journal of Marine Science and Technology (Japan), is available online at Publisher’s website: https://doi.org/10.1007/s00773-023-00962-

    Application of fuzzy controllers in automatic ship motion control systems

    Get PDF
    Automatic ship heading control is a part of the automatic navigation system. It is charged with the task of maintaining the actual ship’s course angle or actual ship’s course without human intervention in accordance with the set course or setting parameter and maintaining this condition under the effect of disturbing influences. Thus, the corrective influence on deviations from a course can be rendered by the position of a rudder or controlling influence that leads to the rotary movement of a vessel around a vertical axis that represents a problem, which can be solved with the use of fuzzy logic. In this paper, we propose to consider the estimation of the efficiency of fuzzy controllers in systems of automatic control of ship movement, obtained by analysis of a method of the formalized record of a logic conclusion and structure of the fuzzy controller. The realization of this allows to carry out effective stabilization of a course angle of a vessel taking into account existing restrictions

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels
    corecore