12,066 research outputs found

    Resource Sharing for Multi-Tenant Nosql Data Store in Cloud

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2015Multi-tenancy hosting of users in cloud NoSQL data stores is favored by cloud providers because it enables resource sharing at low operating cost. Multi-tenancy takes several forms depending on whether the back-end file system is a local file system (LFS) or a parallel file system (PFS), and on whether tenants are independent or share data across tenants In this thesis I focus on and propose solutions to two cases: independent data-local file system, and shared data-parallel file system. In the independent data-local file system case, resource contention occurs under certain conditions in Cassandra and HBase, two state-of-the-art NoSQL stores, causing performance degradation for one tenant by another. We investigate the interference and propose two approaches. The first provides a scheduling scheme that can approximate resource consumption, adapt to workload dynamics and work in a distributed fashion. The second introduces a workload-aware resource reservation approach to prevent interference. The approach relies on a performance model obtained offline and plans the reservation according to different workload resource demands. Results show the approaches together can prevent interference and adapt to dynamic workloads under multi-tenancy. In the shared data-parallel file system case, it has been shown that running a distributed NoSQL store over PFS for shared data across tenants is not cost effective. Overheads are introduced due to the unawareness of the NoSQL store of PFS. This dissertation targets the key-value store (KVS), a specific form of NoSQL stores, and proposes a lightweight KVS over a parallel file system to improve efficiency. The solution is built on an embedded KVS for high performance but uses novel data structures to support concurrent writes, giving capability that embedded KVSs are not designed for. Results show the proposed system outperforms Cassandra and Voldemort in several different workloads

    Part 1: a process view of nature. Multifunctional integration and the role of the construction agent

    Get PDF
    This is the first of two linked articles which draw s on emerging understanding in the field of biology and seeks to communicate it to those of construction, engineering and design. Its insight is that nature 'works' at the process level, where neither function nor form are distinctions, and materialisation is both the act of negotiating limited resource and encoding matter as 'memory', to sustain and integrate processes through time. It explores how biological agents derive work by creating 'interfaces' between adjacent locations as membranes, through feedback. Through the tension between simultaneous aggregation and disaggregation of matter by agents with opposing objectives, many functions are integrated into an interface as it unfolds. Significantly, biological agents induce flow and counterflow conditions within biological interfaces, by inducing phase transition responses in the matte r or energy passing through them, driving steep gradients from weak potentials (i.e. shorter distances and larger surfaces). As with biological agents, computing, programming and, increasingly digital sensor and effector technologies share the same 'agency' and are thus convergent

    Tobacco Regulation Review, v. 6, no. 1, April 2007

    Get PDF
    • 

    corecore