4,329 research outputs found

    Feedback linearization control for a distributed solar collector field

    Get PDF
    This article describes the application of a feedback linearization technique for control of a distributed solar collector field using the energy from solar radiation to heat a fluid. The control target is to track an outlet temperature reference by manipulating the fluid flow rate through the solar field, while attenuating the effect of disturbances (mainly radiation and inlet temperature). The proposed control scheme is very easy to implement, as it uses a numerical approximation of the transport delay and a modification of the classical control scheme to improve startup in such a way that results compared with other control structures under similar conditions are improved while preserving short commissioning times. Experiments in the real plant are also described, demonstrating how operation can be started up efficiently.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-04Ministerio de Ciencia y Tecnología DPI2005-0286

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    H∞ fuzzy control for systems with repeated scalar nonlinearities and random packet losses

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the H∞ fuzzy control problem for a class of systems with repeated scalar nonlinearities and random packet losses. A modified Takagi-Sugeno (T-S) fuzzy model is proposed in which the consequent parts are composed of a set of discrete-time state equations containing a repeated scalar nonlinearity. Such a model can describe some well-known nonlinear systems such as recurrent neural networks. The measurement transmission between the plant and controller is assumed to be imperfect and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to represent the phenomenon of random packet losses. Attention is focused on the analysis and design of H∞ fuzzy controllers with the same repeated scalar nonlinearities such that the closed-loop T-S fuzzy control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers, and the cone complementarity linearization procedure is employed to cast the controller design problem into a sequential minimization one subject to linear matrix inequalities, which can be readily solved by using standard numerical software. Two examples are given to illustrate the effectiveness of the proposed design method

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system
    corecore