23,803 research outputs found

    Feedback Enhances Simultaneous Wireless Information and Energy Transmission in Multiple Access Channels

    Get PDF
    In this report, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian multiple access channel (G-MAC) with and without feedback are fully characterized. More specifically, all the achievable information and energy transmission rates (in bits per channel use and energy-units per channel use, respectively) are identified. Furthermore, the fundamental limits on the individual and sum- rates given a minimum energy rate ensured at an energy harvester are also characterized. In the case without feedback, an achievability scheme based on power-splitting and successive interference cancellation is shown to be optimal. Alternatively, in the case with feedback (G-MAC-F), a simple yet optimal achievability scheme based on power-splitting and Ozarow's capacity achieving scheme is presented. Finally, the energy transmission enhancement induced by the use of feedback is quantified. Feedback can at most double the energy transmission rate at high SNRs when the information transmission sum-rate is kept fixed at the sum-capacity of the G-MAC, but it has no effect at very low SNRs.Comment: INRIA REPORT N{\deg}8804, accepted for publication in IEEE transactions on Information Theory, March, 201

    Feedback Enhances Simultaneous Energy and Information Transmission in Multiple Access Channels

    Get PDF
    International audienceIn this paper, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian multiple access channel with feedback are fully characterized. All the achievable information and energy transmission rates (in bits per channel use and energy-units per channel use, respectively) are identified. More specifically, the information-energy capacity region is fully characterized. A simple achievability scheme based on power-splitting and Ozarow's scheme is shown to be optimal. Finally, the maximum individual information rates and the information sum-capacity that are achievable given a minimum energy rate constraint of b energy-units per channel use at the input of the energy harvester are identified. An interesting conclusion is that for a fixed information transmission rate, feedback can at most double the energy transmission rate with respect to the case without feedback

    Feedback Enhances Simultaneous Wireless Information and Energy Transmission in Multiple Access Channels

    Get PDF
    International audienceIn this paper, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian multiple access channel (G-MAC) with and without feedback are fully characterized. More specifically, all the achievable information and energy transmission rates (in bits per channel use and energy-units per channel use, respectively) are identified. Furthermore, the fundamental limits on the individual and sum-rates given a minimum energy rate ensured at an energy harvester are also characterized. In the case without feedback, an achievability scheme based on power-splitting and successive interference cancellation is shown to be optimal. Alternatively, in the case with feedback (G-MAC-F), a simple yet optimal achievability scheme based on power-splitting and Ozarow's capacity achieving scheme is presented. Finally, the energy transmission enhancement induced by the use of feedback is quantified. Feedback can at most double the energy transmission rate at high SNRs when the information transmission sum-rate is kept fixed at the sum-capacity of the G-MAC, but it has no effect at very low SNRs. Index Terms—Feedback, Gaussian multiple access channel, simultaneous information and energy transmission, RF harvesting, information-energy capacity region

    Feedback Enhances Simultaneous Wireless Information and Energy Transmission in Multiple Access Channels

    Get PDF
    accepted for publication in IEEE Transactions on Information Theory, March 2017.In this report, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian multiple access channel (G-MAC) with and without feedback are fully characterized. More specifically, all the achievable information and energy transmission rates (in bits per channel use and energy-units per channel use, respectively) are identified. Furthermore, the fundamental limits on the individual and sum- rates given a minimum energy rate ensured at an energy harvester are also characterized. In the case without feedback, an achievability scheme based on power-splitting and successive interference cancellation is shown to be optimal. Alternatively, in the case with feedback (G-MAC-F), a simple yet optimal achievability scheme based on power-splitting and Ozarow's capacity achieving scheme is presented. Finally, the energy transmission enhancement induced by the use of feedback is quantified. Feedback can at most double the energy transmission rate at high SNRs when the information transmission sum-rate is kept fixed at the sum-capacity of the G-MAC, but it has no effect at very low SNRs.Dans le présent-rapport, les limites fondamentales de la transmission simultanée d'information et d'énergie dans le canal Gaussien à accès multiple (G-MAC) avec et sans voie de retour sont déterminées.L'ensemble des débits atteignables de transmission d'information et d'énergie (en bits par utilisation canal et en unités d'énergie par utilisation canal respectivement) est identifié.En outre, on caractérise les limites fondamentales sur les débits individuels et le débit-somme de transmission de l'information pour un débit d'énergie donné à l'entrée d'un collecteur d'énergieDans le cas sans voie de retour, on démontre qu'un schéma d'atteignabilité, basé sur la division de puissance et sur l'annulation successive de l'interférence, est optimal.En contrepartie, dans le cas avec voie de retour (G-MAC-F), un schéma d'atteignabilité, simple mais optimal, basé sur la division de puissance et sur le schéma d'Ozarow qui atteint la capacité, est présenté. Finalement, le gain en énergie induit par l'exploitation de la voie de retour est quantifié. La voie de retour peut au mieux dédoubler le débit d'énergie à fort rapport signal sur bruit (RSB) pour un débit-somme d'information égal à la capacité-somme. En revanche, l'utilisation de la voie de retour n'a aucun effect à très faibles RSBs
    • …
    corecore