18,826 research outputs found

    The Wiretap Channel with Feedback: Encryption over the Channel

    Full text link
    In this work, the critical role of noisy feedback in enhancing the secrecy capacity of the wiretap channel is established. Unlike previous works, where a noiseless public discussion channel is used for feedback, the feed-forward and feedback signals share the same noisy channel in the present model. Quite interestingly, this noisy feedback model is shown to be more advantageous in the current setting. More specifically, the discrete memoryless modulo-additive channel with a full-duplex destination node is considered first, and it is shown that the judicious use of feedback increases the perfect secrecy capacity to the capacity of the source-destination channel in the absence of the wiretapper. In the achievability scheme, the feedback signal corresponds to a private key, known only to the destination. In the half-duplex scheme, a novel feedback technique that always achieves a positive perfect secrecy rate (even when the source-wiretapper channel is less noisy than the source-destination channel) is proposed. These results hinge on the modulo-additive property of the channel, which is exploited by the destination to perform encryption over the channel without revealing its key to the source. Finally, this scheme is extended to the continuous real valued modulo-Λ\Lambda channel where it is shown that the perfect secrecy capacity with feedback is also equal to the capacity in the absence of the wiretapper.Comment: Submitted to IEEE Transactions on Information Theor

    On the Noisy Feedback Capacity of Gaussian Broadcast Channels

    Full text link
    It is well known that, in general, feedback may enlarge the capacity region of Gaussian broadcast channels. This has been demonstrated even when the feedback is noisy (or partial-but-perfect) and only from one of the receivers. The only case known where feedback has been shown not to enlarge the capacity region is when the channel is physically degraded (El Gamal 1978, 1981). In this paper, we show that for a class of two-user Gaussian broadcast channels (not necessarily physically degraded), passively feeding back the stronger user's signal over a link corrupted by Gaussian noise does not enlarge the capacity region if the variance of feedback noise is above a certain threshold.Comment: 5 pages, 3 figures, to appear in IEEE Information Theory Workshop 2015, Jerusale
    • …
    corecore