2,061 research outputs found

    Feedback Communication Systems with Limitations on Incremental Redundancy

    Full text link
    This paper explores feedback systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em finite-length} codes (with blocklength NN) and decoding attempts only at {\em certain specified decoding times}, this paper presents the asymptotic expansion achieved by random coding, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents simulation results of tail-biting convolutional codes. The information-theoretic analysis shows that values of NN relatively close to the expected latency yield the same random-coding achievability expansion as with N=∞N = \infty. However, the penalty introduced in the expansion by limiting decoding times is linear in the interval between decoding times. For binary symmetric channels, the RCSP approximation provides an efficiently-computed approximation of performance that shows excellent agreement with a family of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the additive white Gaussian noise channel, bounded-distance decoding simplifies the computation of the marginal RCSP approximation and produces similar results as analysis based on maximum-likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approximation facilitates optimization of the lengths of incremental transmissions when the number of incremental transmissions is constrained to be small or the length of the incremental transmissions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding error trajectory is introduced that provides target error rates for the design of rate-compatible code families for use in feedback communication systems.Comment: 23 pages, 15 figure

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Strong Converse Theorems for Degraded Broadcast Channels with Feedback

    Full text link
    We consider the discrete memoryless degraded broadcast channels with feedback. We prove that the error probability of decoding tends to one exponentially for rates outside the capacity region and derive an explicit lower bound of this exponent function. We shall demonstrate that the information spectrum approach is quite useful for investigating this problem.Comment: Short version of this paper is accepted for presentation at ISIT 2015. arXiv admin note: substantial text overlap with arXiv:1504.0594
    • …
    corecore