799 research outputs found

    Towards vision-based control of cable-driven parallel robots

    Get PDF
    International audienceThis paper deals with the vision-based control of cable-driven parallel robots. First, a 3D pose visual servoing is proposed, where the end-effector pose is indirectly measured and used for regulation. This method is illustrated and validated on a cable-driven parallel robot prototype. Second, to take into account the dynamics of the platform and using a Cartesian pose and velocity estimator, a vision-based computed torque control is developed and validated in simulation

    Intuitive Control System for Cable-Driven Robot Manipulator

    Get PDF
    The presented controller system has been designed and dedicated to the intuitiveand instinctive cable driven robot manipulator. The described robot manipulator is the moving platform suspended by the set of six variable-length steel cables. In practice the construction is like a standard inverted Stewart platform - the platform is able to move in all six degrees of freedom with respect to its base. The presented manipulator has been equipped with the suspending base that has been adequately improved. The improvement gives the additional 3 degrees of freedom and it allows to effectively increase the operation ability of the manipulator in small workspaces. The cable robot can be employed as the master-slave system useful for various teleoperator task

    High performance control of a multiple-DOF motion platform for driver seat vibration test in laboratory

    Get PDF
    Dynamic testing plays an important part in the vehicle seat suspension study. However, a large amount of research work on vibration control of vehicle seat suspension to date has been limited to simulations because the use of a full-size vehicle to test the device is an expensive and dangerous task. In order to decrease the product development time and cost as well as to improve the design quality, in this research, a vibration generation platform is developed for simulating the road induced vehicle vibration in laboratory. Different from existing driving simulation platforms, this research focuses on the vehicle chassis vibration simulation and the control of motion platform to make sure the platform can more accurately generate the actual vehicle vibration movement. A seven degree-of-freedom (DOF) full-vehicle model with varying road inputs is used to simulate the real vehicle vibration. Moreover, because the output vibration data of the vehicle model is all about the absolute heave, pitch and roll velocities of the sprung mass, in order to simulate the vibration in all dimensions, a Stewart multiple-DOF motion platform is designed to generate the required vibration. As a result, the whole vibration simulator becomes a hardware-in-the-loop (HIL) system. The hardware consists of a computer used to calculate the required vibration signals, a Stewart platform used to generate the real movement, and a controller used to control the movement of the platform and implemented by a National Instruments (NI) CompactRIO board. The data, which is from the vehicle model, can be converted into the length of the six legs of the Stewart platform. Therefore, the platform can transfer into the same posture as the real vehicle chassis at that moment. The success of the developed platform is demonstrated by HIL experiments of actuators. As there are six actuators installed in the motion platform, the signals from six encoders are used as the feedback signals for the control of the length of the actuators, and advanced control strategies are developed to control the movement of the platform to make sure the platform can accurately generate the required motion even in heavy load situations. Theoretical study is conducted on how to generate the reasonable vibration signals suitable for vehicle seat vibration tests in different situations and how to develop advanced control strategies for accurate control of the motion platform. Both simulation and experimental studies are conducted to validate the proposed approaches

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators

    CABLE-SUSPENDED CPR-D TYPE PARALLEL ROBOT

    Get PDF
    This paper deals with the analysis and synthesis of a newly selected Cable-suspended Parallel Robot configuration, named CPR-D system. The camera carrier workspace has the shape of a parallelepiped. The CPR-D system has a unique Jacobian matrix that maps the relationship between internal and external coordinates. This geometric relationship is a key solution for the definition of the system kinematic and dynamic models. Because of the CPR-D system complexity, the Lagrange principle of virtual work has been adapted. Two significant Examples have been used for the CPR-D system analysis and validation

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Sliding Mode Control of Cable-Driven Redundancy Parallel Robot with 6 DOF Based on Cable-Length Sensor Feedback

    Get PDF
    The sliding mode control of the cable-driven redundancy parallel robot with six degrees of freedom is studied based on the cable-length sensor feedback. Under the control scheme of task space coordinates, the cable length obtained by the cable-length sensor is used to solve the forward kinematics of the cable-driven redundancy parallel robot in real-time, which is treated as the feedback for the control system. First, the method of forward kinematics of the cable-driven redundancy parallel robot is proposed based on the tetrahedron method and Levenberg-Marquardt method. Then, an iterative initial value estimation method for the Levenberg-Marquardt method is proposed. Second, the sliding mode control method based on the exponential approach law is used to control the effector of the robot, and the influence of the sliding mode parameters on control performance is simulated. Finally, a six-degree-of-freedom position tracking experiment is carried out on the principle prototype of the cable-driven redundancy parallel robot. The experimental results show that the robot can accurately track the desired position in six directions, which indicates that the control method based on the cable-length sensor feedback for the cable-driven redundancy parallel robot is effective and feasible

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces
    corecore