134 research outputs found

    The 2.5 m Telescope of the Sloan Digital Sky Survey

    Full text link
    We describe the design, construction, and performance of the Sloan Digital Sky Survey Telescope located at Apache Point Observatory. The telescope is a modified two-corrector Ritchey-Chretien design which has a 2.5-m, f/2.25 primary, a 1.08-m secondary, a Gascoigne astigmatism corrector, and one of a pair of interchangeable highly aspheric correctors near the focal focal plane, one for imaging and the other for spectroscopy. The final focal ratio is f/5. The telescope is instrumented by a wide-area, multiband CCD camera and a pair of fiber-fed double spectrographs. Novel features of the telescope include: (1) A 3 degree diameter (0.65 m) focal plane that has excellent image quality and small geometrical distortions over a wide wavelength range (3000 to 10,600 Angstroms) in the imaging mode, and good image quality combined with very small lateral and longitudinal color errors in the spectroscopic mode. The unusual requirement of very low distortion is set by the demands of time-delay-and-integrate (TDI) imaging; (2) Very high precision motion to support open loop TDI observations; and (3) A unique wind baffle/enclosure construction to maximize image quality and minimize construction costs. The telescope had first light in May 1998 and began regular survey operations in 2000.Comment: 87 pages, 27 figures. AJ (in press, April 2006

    A Rotating Aperture Mask for Small Telescopes

    Get PDF
    Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that can be adapted to telescopes of different types and proportions, focusing on an implementation for a Celestron C11 Schmidt–Cassegrain optical tube assembly. Mask concepts were first evaluated using diffraction simulation programs, later manufactured, and finally tested on close double stars using a C11. An electronic rotation mechanism was designed, produced, and evaluated. Results show that applying a properly shaped and oriented mask to a C11 enhances contrast in images of double star systems relative to images captured with the unmasked telescope, and they show that the rotation mechanism accurately and repeatably places masks at target orientations with minimal manual effort. Detail drawings of the mask rotation mechanism and code for the software interface are included

    Proton-Ion Medical Machine Study (PIMMS), 2

    Get PDF
    The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron capable of accelerating either light ions or protons. CERN agreed to support and host this study in its PS Division. A close collaboration was also set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complex-shaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive beam spreading were also included for protons. The study has been written in two parts. The more general and theoretical aspects are recorded in Part I and the specific technical design considerations are presented in the present volume, Part II. An accompanying CD-ROM contains supporting publications made by the team and data files for calculations. The PIMMS team started its work in January 1996 in the PS Division and continued for a period of four years

    Virus Detection with DNA Logic Tags

    Get PDF
    • …
    corecore