163 research outputs found

    QoS adaptation in multimedia multicast conference applications for e-learning services

    Get PDF
    The evolution of the World Wide Web (WWW) service has incorporated new distributed multimedia conference applications, powering a new generation of e-learning development, and allowing improved interactivity and pro- human relations. Groupware applications are increasingly representative in the Internet home applications market, however, the Quality of Service (QoS) provided by the network is still a limitation impairing their performance. Such applications have found in multicast technology an ally contributing for their efficient implementation and scalability. Additionally, consider QoS as design goal at application level becomes crucial for groupware development, enabling QoS proactivity to applications. The applications’ ability to adapt themselves dynamically according to the resources availability can be considered a quality factor. Tolerant real-time applications, such as videoconferences, are in the frontline to benefit from QoS adaptation. However, not all include adaptive technology able to provide both end-system and network quality awareness. Adaptation, in these cases, can be achieved by introducing a multiplatform middleware layer responsible for tutoring the applications' resources (enabling adjudication or limitation) based on the available processing and networking capabilities. Congregating these technological contributions, an adaptive platform has been developed integrating public domain multicast tools, applied to a web-based distance learning system. The system is user-centered (e-student), aiming at good pedagogical practices and proactive usability for multimedia and network resources. The services provided, including QoS adapted interactive multimedia multicast conferences (MMC), are fully integrated and transparent to end-users. QoS adaptation, when treated systematically in tolerant real-time applications, denotes advantages in group scalability and QoS sustainability in heterogeneous and unpredictable environments such as the Internet

    Satellite Services for Disaster Management and Security Applications

    Get PDF
    Satellites can be a vital communications element in case of emergencies or natural disasters. This is not only true for developing countries, but also for highly developed regions. As the example of the floods in Central Europe in 2002 have shown, even basic telecommunications services can become unavailable. During natural or man-made disasters, access to data from meteorological and remote sensing satellites is extremely important for assessing the situation

    Dynamic adaptation of streamed real-time E-learning videos over the internet

    Get PDF
    Even though the e-learning is becoming increasingly popular in the academic environment, the quality of synchronous e-learning video is still substandard and significant work needs to be done to improve it. The improvements have to be brought about taking into considerations both: the network requirements and the psycho- physical aspects of the human visual system. One of the problems of the synchronous e-learning video is that the head-and-shoulder video of the instructor is mostly transmitted. This video presentation can be made more interesting by transmitting shots from different angles and zooms. Unfortunately, the transmission of such multi-shot videos will increase packet delay, jitter and other artifacts caused by frequent changes of the scenes. To some extent these problems may be reduced by controlled reduction of the quality of video so as to minimise uncontrolled corruption of the stream. Hence, there is a need for controlled streaming of a multi-shot e-learning video in response to the changing availability of the bandwidth, while utilising the available bandwidth to the maximum. The quality of transmitted video can be improved by removing the redundant background data and utilising the available bandwidth for sending high-resolution foreground information. While a number of schemes exist to identify and remove the background from the foreground, very few studies exist on the identification and separation of the two based on the understanding of the human visual system. Research has been carried out to define foreground and background in the context of e-learning video on the basis of human psychology. The results have been utilised to propose methods for improving the transmission of e-learning videos. In order to transmit the video sequence efficiently this research proposes the use of Feed- Forward Controllers that dynamically characterise the ongoing scene and adjust the streaming of video based on the availability of the bandwidth. In order to satisfy a number of receivers connected by varied bandwidth links in a heterogeneous environment, the use of Multi-Layer Feed-Forward Controller has been researched. This controller dynamically characterises the complexity (number of Macroblocks per frame) of the ongoing video sequence and combines it with the knowledge of availability of the bandwidth to various receivers to divide the video sequence into layers in an optimal way before transmitting it into network. The Single-layer Feed-Forward Controller inputs the complexity (Spatial Information and Temporal Information) of the on-going video sequence along with the availability of bandwidth to a receiver and adjusts the resolution and frame rate of individual scenes to transmit the sequence optimised to give the most acceptable perceptual quality within the bandwidth constraints. The performance of the Feed-Forward Controllers have been evaluated under simulated conditions and have been found to effectively regulate the streaming of real-time e-learning videos in order to provide perceptually improved video quality within the constraints of the available bandwidth
    • …
    corecore