10 research outputs found

    Topics on Register Synthesis Problems

    Get PDF
    Pseudo-random sequences are ubiquitous in modern electronics and information technology. High speed generators of such sequences play essential roles in various engineering applications, such as stream ciphers, radar systems, multiple access systems, and quasi-Monte-Carlo simulation. Given a short prefix of a sequence, it is undesirable to have an efficient algorithm that can synthesize a generator which can predict the whole sequence. Otherwise, a cryptanalytic attack can be launched against the system based on that given sequence. Linear feedback shift registers (LFSRs) are the most widely studied pseudorandom sequence generators. The LFSR synthesis problem can be solved by the Berlekamp-Massey algorithm, by constructing a system of linear equations, by the extended Euclidean algorithm, or by the continued fraction algorithm. It is shown that the linear complexity is an important security measure for pseudorandom sequences design. So we investigate lower bounds of the linear complexity of different kinds of pseudorandom sequences. Feedback with carry shift registers (FCSRs) were first described by Goresky and Klapper. They have many good algebraic properties similar to those of LFSRs. FCSRs are good candidates as building blocks of stream ciphers. The FCSR synthesis problem has been studied in many literatures but there are no FCSR synthesis algorithms for multi-sequences. Thus one of the main contributions of this dissertation is to adapt an interleaving technique to develop two algorithms to solve the FCSR synthesis problem for multi-sequences. Algebraic feedback shift registers (AFSRs) are generalizations of LFSRs and FCSRs. Based on a choice of an integral domain R and π ∈ R, an AFSR can produce sequences whose elements can be thought of elements of the quotient ring R/(π). A modification of the Berlekamp-Massey algorithm, Xu\u27s algorithm solves the synthesis problem for AFSRs over a pair (R, π) with certain algebraic properties. We propose two register synthesis algorithms for AFSR synthesis problem. One is an extension of lattice approximation approach but based on lattice basis reduction and the other one is based on the extended Euclidean algorithm

    Feedback Registers Based on Ramified Extensions of the 2-Adic Numbers (Extended Abstract)

    No full text
    A new class of feedback register, based on ramified extensions of the 2-adic numbers, is described. An algebraic framework for the analysis of these registers and the sequences they output is given. This framework parallels that of linear feedback shift registers. As one consequence of this, a method for cracking summation ciphers is given. These registers give rise to new measures of cryptologic security

    Proof-checking mathematical texts in controlled natural language

    Get PDF
    The research conducted for this thesis has been guided by the vision of a computer program that could check the correctness of mathematical proofs written in the language found in mathematical textbooks. Given that reliable processing of unrestricted natural language input is out of the reach of current technology, we focused on the attainable goal of using a controlled natural language (a subset of a natural language defined through a formal grammar) as input language to such a program. We have developed a prototype of such a computer program, the Naproche system. This thesis is centered around the novel logical and linguistic theory needed for defining and motivating the controlled natural language and the proof checking algorithm of the Naproche system. This theory provides means for bridging the wide gap between natural and formal mathematical proofs. We explain how our system makes use of and extends existing linguistic formalisms in order to analyse the peculiarities of the language of mathematics. In this regard, we describe a phenomenon of this language previously not described by other logicians or linguists, the implicit dynamic function introduction, exemplified by constructs of the form "for every x there is an f(x) such that ...". We show how this function introduction can lead to a paradox analogous to Russell's paradox. To tackle this problem, we developed a novel foundational theory of functions called Ackermann-like Function Theory, which is equiconsistent to ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice) and can be used for imposing limitations to implicit dynamic function introduction in order to avoid this paradox. We give a formal account of implicit dynamic function introduction by extending Dynamic Predicate Logic, a formalism developed by linguists to account for the dynamic nature of natural language quantification, to a novel formalism called Higher-Order Dynamic Predicate Logic, whose semantics is based on Ackermann-like Function Theory. Higher-Order Dynamic Predicate Logic also includes a formal account of the linguistic theory of presuppositions, which we use for clarifying and formally modelling the usage of potentially undefined terms (e.g. 1/x, which is undefined for x=0) and of definite descriptions (e.g. "the even prime number") in the language of mathematics. The semantics of the controlled natural language is defined through a translation from the controlled natural language into an extension of Higher-Order Dynamic Predicate Logic called Proof Text Logic. Proof Text Logic extends Higher-Order Dynamic Predicate Logic in two respects, which make it suitable for representing the content of mathematical texts: It contains features for representing complete texts rather than single assertions, and instead of being based on Ackermann-like Function Theory, it is based on a richer foundational theory called Class-Map-Tuple-Number Theory, which does not only have maps/functions, but also classes/sets, tuples, numbers and Booleans as primitives. The proof checking algorithm checks the deductive correctness of proof texts written in the controlled natural language of the Naproche system. Since the semantics of the controlled natural language is defined through a translation into the Proof Text Logic formalism, the proof checking algorithm is defined on Proof Text Logic input. The algorithm makes use of automated theorem provers for checking the correctness of single proof steps. In this way, the proof steps in the input text do not need to be as fine-grained as in formal proof calculi, but may contain several reasoning steps at once, just as is usual in natural mathematical texts. The proof checking algorithm has to recognize implicit dynamic function introductions in the input text and has to take care of presuppositions of mathematical statements according to the principles of the formal account of presuppositions mentioned above. We prove two soundness and two completeness theorems for the proof checking algorithm: In each case one theorem compares the algorithm to the semantics of Proof Text Logic and one theorem compares it to the semantics of standard first-order predicate logic. As a case study for the theory developed in the thesis, we illustrate the working of the Naproche system on a controlled natural language adaptation of the beginning of Edmund Landau's Grundlagen der Analysis.Beweisprüfung mathematischer Texte in kontrollierter natürlicher Sprache Die Forschung, die für diese Dissertation durchgeführt wurde, basiert auf der Vision eines Computerprogramms, das die Korrektheit von mathematischen Beweisen, die in der gewöhnlichen mathematischen Fachsprache verfasst sind, überprüfen kann. Da die zuverlässige automatische Bearbeitung von uneingeschränktem natürlich-sprachlichen Input außer Reichweite der gegenwärtigen Technologie ist, haben wir uns auf das erreichbare Ziel fokussiert, eine kontrollierte natürliche Sprache (eine Teilmenge der natürlichen Sprache, die durch eine formale Grammatik definiert ist) als Eingabesprache für ein solches Programm zu verwenden. Wir haben einen Prototypen eines solchen Computerprogramms, das Naproche-System, entwickelt. Die vorliegende Dissertation beschreibt die neuartigen logischen und linguistischen Theorien, die benötigt werden, um die kontrollierte natürliche Sprache und den Beweisprüfungs-Algorithmus des Naproche-Systems zu definieren und zu motivieren. Diese Theorien stellen Methoden zu Verfügung, die dazu verwendet werden können, die weite Kluft zwischen natürlichen und formalen mathematischen Beweisen zu überbrücken. Wir erklären, wie unser System existierende linguistische Formalismen verwendet und erweitert, um die Besonderheiten der mathematischen Fachsprache zu analysieren. In diesem Zusammenhang beschreiben wir ein Phänomen dieser Fachsprache, das bisher von Logikern und Linguisten nicht beschrieben wurde – die implizite dynamische Funktionseinführung, die durch Konstruktionen der vorm "für jedes x gibt es ein f(x), so dass ..." veranschaulicht werden kann. Wir zeigen, wie diese Funktionseinführung zu einer der Russellschen analogen Antinomie führt. Um dieses Problem zu lösen, haben wir eine neuartige Grundlagentheorie für Funktionen entwickelt, die Ackermann-artige Funktionstheorie, die äquikonsistent zu ZFC (Zermelo-Fraenkel-Mengenlehre mit Auswahlaxiom) ist und verwendet werden kann, um der impliziten dynamischen Funktionseinführung Grenzen zu setzen, die zur Vermeidung dieser Antinomie führen. Wir beschreiben die implizite dynamische Funktionseinführung formal, indem wir die Dynamische Prädikatenlogik – ein Formalismus, der von Linguisten entwickelt wurde, um die dynamischen Eigenschaften der natürlich-sprachlichen Quantifizierung zu erfassen – zur Dynamischen Prädikatenlogik Höherer Stufe erweitern, deren Semantik auf der Ackermann-artigen Funktionstheorie basiert. Die Dynamische Prädikatenlogik Höherer Stufe formalisiert auch die linguistische Theorie der Präsuppositionen, die wir verwenden, um den Gebrauch potentiell undefinierter Terme (z.B. der Term 1/x, der für x=0 undefiniert ist) und bestimmter Kennzeichnungen (z.B. "die gerade Primzahl") in der mathematischen Fachsprache zu modellieren. Die Semantik der kontrollierten natürlichen Sprache wird definiert durch eine Übersetzung dieser in eine Erweiterung der Dynamischen Prädikatenlogik Höherer Stufe mit der Bezeichnung Beweistext-Logik. Die Beweistext-Logik erweitert die Dynamische Prädikatenlogik Höherer Stufe in zwei Hinsichten: Sie stellt Funktionalitäten für die Repräsentation von vollständigen Texten, und nicht nur von Einzelaussagen, zur Verfügung, und anstatt auf der Ackermann-artigen Funktionstheorie zu basieren, basiert sie auf einer reichhaltigeren Grundlagentheorie – der Klassen-Abbildungs-Tupel-Zahlen-Theorie, die neben Abbildungen/Funktionen auch noch Klassen/Mengen, Tupel, Zahlen und boolesche Werte als Grundobjekte zur Verfügung stellt. Der Beweisprüfungs-Algorithmus prüft die deduktive Korrektheit von Beweistexten, die in der kontrollierten natürlichen Sprache des Naproche-Systems verfasst sind. Da die Semantik dieser kontrollierten natürlichen Sprache durch eine Übersetzung in die Beweistext-Logik definiert ist, ist der Beweisprüfungs-Algorithmus für Beweistext-Logik-Input definiert. Der Algorithmus verwendet automatische Beweiser für die Überprüfung einzelner Beweisschritte. Dadurch müssen die Beweisschritte in dem Eingabetext nicht so kleinschrittig sein wie in formalen Beweiskalkülen, sondern können mehrere Deduktionsschritte zu einem Schritt vereinen, so wie dies auch in natürlichen mathematischen Texten üblich ist. Der Beweisprüfungs-Algorithmus muss die impliziten Funktionseinführungen im Eingabetext erkennen und Präsuppositionen von mathematischen Aussagen auf Grundlage der oben erwähnten Präsuppositionstheorie behandeln. Wir beweisen zwei Korrektheits- und zwei Vollständigkeitssätze für den Beweisprüfungs-Algorithmus: Jeweils einer dieser Sätze vergleicht den Algorithmus mit der Semantik der Beweistext-Logik und jeweils einer mit der Semantik der üblichen Prädikatenlogik erster Stufe. Als Fallstudie für die in dieser Dissertation entwickelte Theorie veranschaulichen wir die Funktionsweise des Naproche-Systems an einem an die kontrollierte natürliche Sprache angepassten Anfangsabschnitt von Edmund Landaus Grundlagen der Analysis

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Maritime expressions:a corpus based exploration of maritime metaphors

    Get PDF
    This study uses a purpose-built corpus to explore the linguistic legacy of Britain’s maritime history found in the form of hundreds of specialised ‘Maritime Expressions’ (MEs), such as TAKEN ABACK, ANCHOR and ALOOF, that permeate modern English. Selecting just those expressions commencing with ’A’, it analyses 61 MEs in detail and describes the processes by which these technical expressions, from a highly specialised occupational discourse community, have made their way into modern English. The Maritime Text Corpus (MTC) comprises 8.8 million words, encompassing a range of text types and registers, selected to provide a cross-section of ‘maritime’ writing. It is analysed using WordSmith analytical software (Scott, 2010), with the 100 million-word British National Corpus (BNC) as a reference corpus. Using the MTC, a list of keywords of specific salience within the maritime discourse has been compiled and, using frequency data, concordances and collocations, these MEs are described in detail and their use and form in the MTC and the BNC is compared. The study examines the transformation from ME to figurative use in the general discourse, in terms of form and metaphoricity. MEs are classified according to their metaphorical strength and their transference from maritime usage into new registers and domains such as those of business, politics, sports and reportage etc. A revised model of metaphoricity is developed and a new category of figurative expression, the ‘resonator’, is proposed. Additionally, developing the work of Lakov and Johnson, Kovesces and others on Conceptual Metaphor Theory (CMT), a number of Maritime Conceptual Metaphors are identified and their cultural significance is discussed
    corecore