380 research outputs found

    Control and estimation with limited information: a game-theoretic approach

    Get PDF
    Modern control systems can be viewed as interconnections of spatially distributed multiple subsystems, where the individual subsystems share their information with each other through an underlying network that inherently introduces limitations on information flow. Inherent limitations on the flow of information among individual subsystems may stem from structural constraints of the network and/or communication constraints of the network. Hence, in order to design optimal control and estimation mechanisms for modern control systems, we must answer the following two practical but important questions: (1) What are the fundamental communication limits to achieve a desired control performance and stability? (2) What are the approaches one has to adopt to design a decentralized controller for a complex system to deal with structural constraints? In this thesis, we consider four different problems within a game-theoretic framework to address the above questions. The first part of the thesis considers problems of control and estimation with limited communication, which correspond to question (1) above. We first consider the minimax estimation problem with intermittent observations. In this setting, the disturbance in the dynamical system as well as the sensor noise are controlled by adversaries, and the estimator receives the sensor measurements only sporadically, with availability governed by an independent and identically distributed (i.i.d.) Bernoulli process. This problem is cast in the thesis within the framework of stochastic zero-sum dynamic games. First, a corresponding stochastic minimax state estimator (SMSE) is obtained, along with an associated generalized stochastic Riccati equation (GSRE). Then, the asymptotic behavior of the estimation error in terms of the GSRE is analyzed. We obtain threshold-type conditions on the rate of intermittent observations and the disturbance attenuation parameter, above which 1) the expected value of the GSRE is bounded from below and above by deterministic quantities, and 2) the norm of the sequence generated by the GSRE converges weakly to a unique stationary distribution. We then study the minimax control problem over unreliable communication channels. The transmission of packets from the plant output sensors to the controller, and from the controller to the plant, are over sporadically failing channels governed by two independent i.i.d. Bernoulli processes. Two different scenarios for unreliable communication channels are considered. The first one is when the communication channel provides perfect acknowledgments of successful transmissions of control packets through a clean reverse channel, which is the TCP (Transmission Control Protocol), and the second one is when there is no acknowledgment, which is the UDP (User Datagram Protocol). Under both scenarios, the thesis obtains output feedback minimax controllers; it also identifies a set of explicit existence conditions in terms of the disturbance attenuation parameter and the communication channel loss rates, above which the corresponding minimax controller achieves the desired performance and stability. In the second part of the thesis, we consider two different large-scale optimization problems via mean field game theory, which address structural constraints in the complex system stated in question (2) above. We first consider two classes of mean field games. The first problem (P1) is one where each agent minimizes an exponentiated performance index, capturing risk-sensitive behavior, whereas in the second problem (P2) each agent minimizes a worst-case risk-neutral performance index, where a fictitious agent or an adversary enters each agent's state system. For both problems, a mean field system for the corresponding problem is constructed to arrive at a best estimate of the actual mean field behavior in various senses in the large population regime. In the finite population regime, we show that there exist epsilon-Nash equilibria for both P1 and P2, where the corresponding individual Nash strategies are decentralized as functions of the local state information. In both cases, the positive parameter epsilon can be taken to be arbitrarily small as the population size grows. Finally, we show that the Nash equilibria for P1 and P2 both feature robustness due to the risk-sensitive and worst-case behaviors of the agents. In the last main chapter of the thesis, we study mean field Stackelberg differential games. There is one leader and a large number, say N, of followers. The leader holds a dominating position in the game, where he first chooses and then announces his optimal strategy, to which the N followers respond by playing a Nash game. The followers are coupled with each other through the mean field term, and are strongly influenced by the leader's strategy. From the leader's perspective, he is coupled with the N followers through the mean field term. In this setting, we characterize an approximated stochastic mean field process of the followers governed by the leader's strategy, which leads to a decentralized epsilon-Nash-Stackelberg equilibrium. As a consequence of decentralization, we subsequently show that the positive parameter epsilon can be picked arbitrarily small when the number of followers is arbitrarily large. In the thesis, we also include several numerical computations and simulations, which illustrate the theoretical results

    The Computation of Approximate Generalized Feedback Nash Equilibria

    Full text link
    We present the concept of a Generalized Feedback Nash Equilibrium (GFNE) in dynamic games, extending the Feedback Nash Equilibrium concept to games in which players are subject to state and input constraints. We formalize necessary and sufficient conditions for (local) GFNE solutions at the trajectory level, which enable the development of efficient numerical methods for their computation. Specifically, we propose a Newton-style method for finding game trajectories which satisfy the necessary conditions, which can then be checked against the sufficiency conditions. We show that the evaluation of the necessary conditions in general requires computing a series of nested, implicitly-defined derivatives, which quickly becomes intractable. To this end, we introduce an approximation to the necessary conditions which is amenable to efficient evaluation, and in turn, computation of solutions. We term the solutions to the approximate necessary conditions Generalized Feedback Quasi Nash Equilibria (GFQNE), and we introduce numerical methods for their computation. In particular, we develop a Sequential Linear-Quadratic Game approach, in which a locally approximate LQ game is solved at each iteration. The development of this method relies on the ability to compute a GFNE to inequality- and equality-constrained LQ games, and therefore specific methods for the solution of these special cases are developed in detail. We demonstrate the effectiveness of the proposed solution approach on a dynamic game arising in an autonomous driving application

    複数の意思決定者を伴う線形確率システムにおけるH∞制約付き動的ゲーム

    Get PDF
    広島大学(Hiroshima University)博士(学術)Doctor of Philosophydoctora

    Applications of Singular Perturbation Techniques to Control Problems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424National Science Foundation / NSF ECS 82-1763

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Annual Research Report 2020

    Get PDF
    corecore