87 research outputs found

    The Mechanics and Control of Undulatory Robotic Locomotion

    Get PDF
    In this dissertation, we examine a formulation of problems of undulatory robotic locomotion within the context of mechanical systems with nonholonomic constraints and symmetries. Using tools from geometric mechanics, we study the underlying structure found in general problems of locomotion. In doing so, we decompose locomotion into two basic components: internal shape changes and net changes in position and orientation. This decomposition has a natural mathematical interpretation in which the relationship between shape changes and locomotion can be described using a connection on a trivial principal fiber bundle. We begin by reviewing the processes of Lagrangian reduction and reconstruction for unconstrained mechanical systems with Lie group symmetries, and present new formulations of this process which are easily adapted to accommodate external constraints. Additionally, important physical quantities such as the mechanical connection and reduced mass-inertia matrix can be trivially determined using this formulation. The presence of symmetries then allows us to reduce the necessary calculations to simple matrix manipulations. The addition of constraints significantly complicates the reduction process; however, we show that for invariant constraints, a meaningful connection can be synthesized by defining a generalized momentum representing the momentum of the system in directions allowed by the constraints. We then prove that the generalized momentum and its governing equation possess certain invariances which allows for a reduction process similar to that found in the unconstrained case. The form of the reduced equations highlights the synthesized connection and the matrix quantities used to calculate these equations. The use of connections naturally leads to methods for testing controllability and aids in developing intuition regarding the generation of various locomotive gaits. We present accessibility and controllability tests based on taking derivatives of the connection, and relate these tests to taking Lie brackets of the input vector fields. The theory is illustrated using several examples, in particular the examples of the snakeboard and Hirose snake robot. We interpret each of these examples in light of the theory developed in this thesis, and examine the generation of locomotive gaits using sinusoidal inputs and their relationship to the controllability tests based on Lie brackets

    Design of a walking robot

    Get PDF
    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project

    An Adaptable Robotic Snake using a Compliant Actuated Tensegrity Structure for Locomotion and its Motion Pattern Analysis

    Get PDF
    The thesis explores the possibilities that using a compliant actuated tensegrity structure to build an adapted robotic snake for locomotion. With the development of modern society, people are relying more and more on robots to assist in their work. The robotic snake is a type of robot that is often used in exploration and relief work on complex terrain due to its unique bionic structure. However, traditional snake-like robots have structures that focus on specific snake-like movement patterns, but cannot actually simulate how the spine and muscles of a snake can work, thus losing out on desirable features such as high energy efficiency and flexibility. In this work, a tensegrity structure is researched to enable a robotic snake to realize the structure and capabilities of a snake. A prototype has been built for experiments: three segments connected by springs and strings which forms a tension network. The prototype is actuated by the change of the tension within the network, just as the muscles in a snake contract and stretch around the spine. Experiments with the prototype show that it can carry out effective rectilinear movement and steering movement on a variety of terrain, and its overall speed is mainly limited by the friction coefficient of the ground. However, because the underside of the body module prevents the module from tilting, the prototype cannot perform serpentine movement. More improvements in the shape design of the body modules and motion control could also be studied in future work

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Automated Visual Database Creation For A Ground Vehicle Simulator

    Get PDF
    This research focuses on extracting road models from stereo video sequences taken from a moving vehicle. The proposed method combines color histogram based segmentation, active contours (snakes) and morphological processing to extract road boundary coordinates for conversion into Matlab or Multigen OpenFlight compatible polygonal representations. Color segmentation uses an initial truth frame to develop a color probability density function (PDF) of the road versus the terrain. Subsequent frames are segmented using a Maximum Apostiori Probability (MAP) criteria and the resulting templates are used to update the PDFs. Color segmentation worked well where there was minimal shadowing and occlusion by other cars. A snake algorithm was used to find the road edges which were converted to 3D coordinates using stereo disparity and vehicle position information. The resulting 3D road models were accurate to within 1 meter

    Snake and Snake Robot Locomotion in Complex, 3-D Terrain

    Get PDF
    Snakes are able to traverse almost all types of environments by bending their elongate bodies in three dimensions to interact with the terrain. Similarly, a snake robot is a promising platform to perform critical tasks in various environments. Understanding how 3-D body bending effectively interacts with the terrain for propulsion and stability can not only inform how snakes move through natural environments, but also inspire snake robots to achieve similar performance to facilitate humans. How snakes and snake robots move on flat surfaces has been understood relatively well in previous studies. However, such ideal terrain is rare in natural environments and little was understood about how to generate propulsion and maintain stability when large height variations occur, except for some qualitative descriptions of arboreal snake locomotion and a few robots using geometric planning. To bridge this knowledge gap, in this dissertation research we integrated animal experiments and robotic studies in three representative environments: a large smooth step, an uneven arena of blocks of large height variation, and large bumps. We discovered that vertical body bending induces stability challenges but can generate large propulsion. When traversing a large smooth step, a snake robot is challenged by roll instability that increases with larger vertical body bending because of a higher center of mass. The instability can be reduced by body compliance that statistically increases surface contact. Despite the stability challenge, vertical body bending can potentially allow snakes to push against terrain for propulsion similar to lateral body bending, as demonstrated by corn snakes traversing an uneven arena. This ability to generate large propulsion was confirmed on a robot if body-terrain contact is well maintained. Contact feedback control can help the strategy accommodate perturbations such as novel terrain geometry or excessive external forces by helping the body regain lost contact. Our findings provide insights into how snakes and snake robots can use vertical body bending for efficient and versatile traversal of the three-dimensional world while maintaining stability

    Simplifying robotic locomotion by escaping traps via an active tail

    Get PDF
    Legged systems offer the ability to negotiate and climb heterogeneous terrains, more so than their wheeled counterparts \cite{freedberg_2012}. However, in certain complex environments, these systems are susceptible to failure conditions. These scenarios are caused by the interplay between the locomotor's kinematic state and the local terrain configuration, thus making them challenging to predict and overcome. These failures can cause catastrophic damage to the system and thus, methods to avoid such scenarios have been developed. These strategies typically take the form of environmental sensing or passive mechanical elements that adapt to the terrain. Such methods come at an increased control and mechanical design complexity for the system, often still being susceptible to imperceptible hazards. In this study, we investigated whether a tail could serve to offload this complexity by acting as a mechanism to generate new terradynamic interactions and mitigate failure via substrate contact. To do so, we developed a quadrupedal C-leg robophysical model (length and width = 27 cm, limb radius = 8 cm) capable of walking over rough terrain with an attachable actuated tail (length = 17 cm). We investigated three distinct tail strategies: static pose, periodic tapping, and load-triggered (power) tapping, while varying the angle of the tail relative to the body. We challenged the system to traverse a terrain (length = 160 cm, width = 80 cm) of randomized blocks (length and width = 10 cm, height = 0 to 12 cm) whose dimensions were scaled to the robot. Over this terrain, the robot exhibited trapping failures independent of gait pattern. Using the tail, the robot could free itself from trapping with a probability of 0 to 0.5, with the load-driven behaviors having comparable performance to low frequency periodic tapping across all tested tail angles. Along with increasing this likelihood of freeing, the robot displayed a longer survival distance over the rough terrain with these tail behaviors. In summary, we present the beginning of a framework that leverages mechanics via tail-ground interactions to offload limb control and design complexity to mitigate failure and improve legged system performance in heterogeneous environments.M.S

    Robotic Minimally Invasive Tools for Restricted Access Confined Spaces

    Get PDF
    A study has been performed in the design and fabrication of deployable borehole robots into confined spaces. Three robot systems have been developed to perform a visual survey of a subterranean space where for any reason humans could not enter. A 12mm diameter snake arm was designed with a focus on the cable tensions and the failure modes for the components that make the snake arm. An iterative solver was developed to model the snake arm and algorithmically calculate the snake arms optimal length with consideration of the failure modes. A robot was developed to extend the range capabilities of borehole robots using reconfigurable borehole robots based around established actuation and manufacturing techniques. The expected distance and weight requirements of the robot are calculated alongside the forces the robot is required to generate in order to achieve them. The whegged design incorporated into the tracks is also analysed to measure the capability of the robot over rough terrain. Finally, the experiments to find the actual driving forces of the tracks are performed and used to calculate the actual range of the robot in comparison to the target range. The potential of reconfigurable mobile robots for deployment through boreholes is limited by the requirement for conventional gears, motors, and joints. This chapter explores the use of smart materials and innovative manufacturing techniques to form a novel concept of a self-folding robotic joint for a self-assembling robotic system. The design uses shape memory alloys fabricated in laminate structures with heaters to create folding structures
    • …
    corecore