219,205 research outputs found

    The design of a turboshaft speed governor using modern control techniques

    Get PDF
    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient

    Optimal signal processing in small stochastic biochemical networks

    Get PDF
    We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we may do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the "cross-talk" dilemma as well as the previously unexplained observation that transcription factors which undergo proteolysis are more likely to be auto-repressive.Comment: 41 pages 7 figures, 5 table

    Optimal control of ankle joint moment: Toward unsupported standing in paraplegia

    Get PDF
    This paper considers part of the problem of how to provide unsupported standing for paraplegics by feedback control. In this work our overall objective is to stabilize the subject by stimulation only of his ankle joints while the other joints are braced, Here, we investigate the problem of ankle joint moment control. The ankle plantarflexion muscles are first identified with pseudorandom binary sequence (PRBS) signals, periodic sinusoidal signals, and twitches. The muscle is modeled in Hammerstein form as a static recruitment nonlinearity followed by a linear transfer function. A linear-quadratic-Gaussian (LQG)-optimal controller design procedure for ankle joint moment was proposed based on the polynomial equation formulation, The approach was verified by experiments in the special Wobbler apparatus with a neurologically intact subject, and these experimental results are reported. The controller structure is formulated in such a way that there are only two scalar design parameters, each of which has a clear physical interpretation. This facilitates fast controller synthesis and tuning in the laboratory environment. Experimental results show the effects of the controller tuning parameters: the control weighting and the observer response time, which determine closed-loop properties. Using these two parameters the tradeoff between disturbance rejection and measurement noise sensitivity can be straightforwardly balanced while maintaining a desired speed of tracking. The experimentally measured reference tracking, disturbance rejection, and noise sensitivity are good and agree with theoretical expectations

    Telemetry synchronizer

    Get PDF
    A telemetry data synchronizer is reported for achieving phase lock and synchronization of an input signal having a pseudorandom sequence

    Polarization compensator for optical communications

    Get PDF
    An optical data communication system is provided whereby two orthogonal polarization states of a light beam carrier correspond to digital states. In such a system, automatic polarization compensation is provided by applying a dither modulating voltage to a cell exhibiting the electro-optic effect. The cell controls the relative phase of electric field components of an input light beam enabling the dither frequency component of the difference of the instantaneous powers in the two polarization states to be coherently detected. A signal derived from the coherent detection process is fed back to the cell via an integrator to form polarization bias compensating servo loop ot Type 1

    Sampled data controller Patent

    Get PDF
    Feedback controller for sampling error signals within single control formulation time interva

    Feedback information and the reward positivity

    No full text
    The reward positivity is a component of the event-related brain potential (ERP) sensitive to neural mechanisms of reward processing. Multiple studies have demonstrated that reward positivity amplitude indices a reward prediction error signal that is fundamental to theories of reinforcement learning. However, whether this ERP component is also sensitive to richer forms of performance information important for supervised learning is less clear. To investigate this question, we recorded the electroencephalogram from participants engaged in a time estimation task in which the type of error information conveyed by feedback stimuli was systematically varied across conditions. Consistent with our predictions, we found that reward positivity amplitude decreased in relation to increasing information content of the feedback, and that reward positivity amplitude was unrelated to trial-to-trial behavioral adjustments in task performance. By contrast, a series of exploratory analyses revealed frontal-central and posterior ERP components immediately following the reward positivity that related to these processes. Taken in the context of the wider literature, these results suggest that the reward positivity is produced by a neural mechanism that motivates task performance, whereas the later ERP components apply the feedback information according to principles of supervised learning

    A Versatile Pseudo-Random Noise Generator

    Get PDF
    A detailed design is presented for a digital pseudo-random noise generator. The instrument is built with standard integrated circuits. It produces both binary noise (pseudo-random binary sequences) and white Gaussian noise of variable bandwidth. By setting front panel switches to match tabulated octal codes, one may select a vast number of independent noise programs

    Apparatus for statistical time-series analysis of electrical signals

    Get PDF
    An apparatus for performing statistical time-series analysis of complex electrical signal waveforms, permitting prompt and accurate determination of statistical characteristics of the signal is presented
    • …
    corecore