546 research outputs found

    C-Trend parameters and possibilities of federated learning

    Get PDF
    Abstract. In this observational study, federated learning, a cutting-edge approach to machine learning, was applied to one of the parameters provided by C-Trend Technology developed by Cerenion Oy. The aim was to compare the performance of federated learning to that of conventional machine learning. Additionally, the potential of federated learning for resolving the privacy concerns that prevent machine learning from realizing its full potential in the medical field was explored. Federated learning was applied to burst-suppression ratio’s machine learning and it was compared to the conventional machine learning of burst-suppression ratio calculated on the same dataset. A suitable aggregation method was developed and used in the updating of the global model. The performance metrics were compared and a descriptive analysis including box plots and histograms was conducted. As anticipated, towards the end of the training, federated learning’s performance was able to approach that of conventional machine learning. The strategy can be regarded to be valid because the performance metric values remained below the set test criterion levels. With this strategy, we will potentially be able to make use of data that would normally be kept confidential and, as we gain access to more data, eventually develop machine learning models that perform better. Federated learning has some great advantages and utilizing it in the context of qEEGs’ machine learning could potentially lead to models, which reach better performance by receiving data from multiple institutions without the difficulties of privacy restrictions. Some possible future directions include an implementation on heterogeneous data and on larger data volume.C-Trend-teknologian parametrit ja federoidun oppimisen mahdollisuudet. Tiivistelmä. Tässä havainnointitutkimuksessa federoitua oppimista, koneoppimisen huippuluokan lähestymistapaa, sovellettiin yhteen Cerenion Oy:n kehittämään C-Trend-teknologian tarjoamaan parametriin. Tavoitteena oli verrata federoidun oppimisen suorituskykyä perinteisen koneoppimisen suorituskykyyn. Lisäksi tutkittiin federoidun oppimisen mahdollisuuksia ratkaista yksityisyyden suojaan liittyviä rajoitteita, jotka estävät koneoppimista hyödyntämästä täyttä potentiaaliaan lääketieteen alalla. Federoitua oppimista sovellettiin purskevaimentumasuhteen koneoppimiseen ja sitä verrattiin purskevaimentumasuhteen laskemiseen, johon käytettiin perinteistä koneoppimista. Kummankin laskentaan käytettiin samaa dataa. Sopiva aggregointimenetelmä kehitettiin, jota käytettiin globaalin mallin päivittämisessä. Suorituskykymittareiden tuloksia verrattiin keskenään ja tehtiin kuvaileva analyysi, johon sisältyi laatikkokuvioita ja histogrammeja. Odotetusti opetuksen loppupuolella federoidun oppimisen suorituskyky pystyi lähestymään perinteisen koneoppimisen suorituskykyä. Menetelmää voidaan pitää pätevänä, koska suorituskykymittarin arvot pysyivät alle asetettujen testikriteerien tasojen. Tämän menetelmän avulla voimme ehkä hyödyntää dataa, joka normaalisti pidettäisiin salassa, ja kun saamme lisää dataa käyttöömme, voimme lopulta kehittää koneoppimismalleja, jotka saavuttavat paremman suorituskyvyn. Federoidulla oppimisella on joitakin suuria etuja, ja sen hyödyntäminen qEEG:n koneoppimisen yhteydessä voisi mahdollisesti johtaa malleihin, jotka saavuttavat paremman suorituskyvyn saamalla tietoja useista eri lähteistä ilman yksityisyyden suojaan liittyviä rajoituksia. Joitakin mahdollisia tulevia suuntauksia ovat muun muassa heterogeenisen datan ja suurempien tietomäärien käyttö

    Federated deep transfer learning for EEG decoding using multiple BCI tasks

    Full text link
    Deep learning has been successful in BCI decoding. However, it is very data-hungry and requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer. Recently, transfer learning for EEG decoding has been suggested as a remedy and become subject to recent BCI competitions (e.g. BEETL), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often based on different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN, which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets obtained from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.Comment: 4 pages, 3 figure

    Classification of electroencephalography using cooperative learning based on participating client balancing

    Get PDF
    Modern technologies are widely used today to diagnose epilepsy, neurological disorders, and brain tumors. Meanwhile, it is not cost-effective in terms of time and money to use a large amount of electroencephalography (EEG) data from different centers and collect them in a central server for processing and analysis. Collecting this data correctly is challenging, and organizations avoid sharing their and client information with others due to data privacy protection. It is difficult to collect these data correctly and it is challenging to transfer them to research centers due to the privacy of the data. In this regard, collaborative learning as an extraordinary approach in this field paves the way for the use of information repositories in research matters without transferring the original data to the centers. This study focuses on the use of a heterogeneous client balancing technique with an interval selection approach and classification of EEG signals with ResNet50 deep architecture. The test results achieved an accuracy of 99.14 compared to similar methods

    Decentralized Federated Learning for Epileptic Seizures Detection in Low-Power Wearable Systems

    Get PDF
    In healthcare, data privacy of patients regulations prohibits data from being moved outside the hospital, preventing international medical datasets from being centralized for AI training. Federated learning (FL) is a data privacy-focused method that trains a global model by aggregating local models from hospitals. Existing FL techniques adopt a central server-based network topology, where the server assembles the local models trained in each hospital to create a global model. However, the server could be a point of failure, and models trained in FL usually have worse performance than those trained in the centralized learning manner when the patient's data are not independent and identically distributed (Non-IID) in the hospitals. This paper presents a decentralized FL framework, including training with adaptive ensemble learning and a deployment phase using knowledge distillation. The adaptive ensemble learning step in the training phase leads to the acquisition of a specific model for each hospital that is the optimal combination of local models and models from other available hospitals. This step solves the non-IID challenges in each hospital. The deployment phase adjusts the model's complexity to meet the resource constraints of wearable systems. We evaluated the performance of our approach on edge computing platforms using EPILEPSIAE and TUSZ databases, which are public epilepsy datasets.RYC2021-032853-

    Learning Sensory Representations with Minimal Supervision

    Get PDF

    Federated Self-Supervised Learning of Multi-Sensor Representations for Embedded Intelligence

    Get PDF
    Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models due to privacy, bandwidth limitations, and the prohibitive cost of annotations. Federated learning provides a compelling framework for learning models from decentralized data, but conventionally, it assumes the availability of labeled samples, whereas on-device data are generally either unlabeled or cannot be annotated readily through user interaction. To address these issues, we propose a self-supervised approach termed \textit{scalogram-signal correspondence learning} based on wavelet transform to learn useful representations from unlabeled sensor inputs, such as electroencephalography, blood volume pulse, accelerometer, and WiFi channel state information. Our auxiliary task requires a deep temporal neural network to determine if a given pair of a signal and its complementary viewpoint (i.e., a scalogram generated with a wavelet transform) align with each other or not through optimizing a contrastive objective. We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains. We demonstrate the effectiveness of representations learned from an unlabeled input collection on downstream tasks with training a linear classifier over pretrained network, usefulness in low-data regime, transfer learning, and cross-validation. Our methodology achieves competitive performance with fully-supervised networks, and it outperforms pre-training with autoencoders in both central and federated contexts. Notably, it improves the generalization in a semi-supervised setting as it reduces the volume of labeled data required through leveraging self-supervised learning.Comment: Accepted for publication at IEEE Internet of Things Journa

    Decoding Neural Signals with Computational Models: A Systematic Review of Invasive BMI

    Full text link
    There are significant milestones in modern human's civilization in which mankind stepped into a different level of life with a new spectrum of possibilities and comfort. From fire-lighting technology and wheeled wagons to writing, electricity and the Internet, each one changed our lives dramatically. In this paper, we take a deep look into the invasive Brain Machine Interface (BMI), an ambitious and cutting-edge technology which has the potential to be another important milestone in human civilization. Not only beneficial for patients with severe medical conditions, the invasive BMI technology can significantly impact different technologies and almost every aspect of human's life. We review the biological and engineering concepts that underpin the implementation of BMI applications. There are various essential techniques that are necessary for making invasive BMI applications a reality. We review these through providing an analysis of (i) possible applications of invasive BMI technology, (ii) the methods and devices for detecting and decoding brain signals, as well as (iii) possible options for stimulating signals into human's brain. Finally, we discuss the challenges and opportunities of invasive BMI for further development in the area.Comment: 51 pages, 14 figures, review articl
    • …
    corecore