136 research outputs found

    A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning

    Full text link
    Forgetting refers to the loss or deterioration of previously acquired information or knowledge. While the existing surveys on forgetting have primarily focused on continual learning, forgetting is a prevalent phenomenon observed in various other research domains within deep learning. Forgetting manifests in research fields such as generative models due to generator shifts, and federated learning due to heterogeneous data distributions across clients. Addressing forgetting encompasses several challenges, including balancing the retention of old task knowledge with fast learning of new tasks, managing task interference with conflicting goals, and preventing privacy leakage, etc. Moreover, most existing surveys on continual learning implicitly assume that forgetting is always harmful. In contrast, our survey argues that forgetting is a double-edged sword and can be beneficial and desirable in certain cases, such as privacy-preserving scenarios. By exploring forgetting in a broader context, we aim to present a more nuanced understanding of this phenomenon and highlight its potential advantages. Through this comprehensive survey, we aspire to uncover potential solutions by drawing upon ideas and approaches from various fields that have dealt with forgetting. By examining forgetting beyond its conventional boundaries, in future work, we hope to encourage the development of novel strategies for mitigating, harnessing, or even embracing forgetting in real applications. A comprehensive list of papers about forgetting in various research fields is available at \url{https://github.com/EnnengYang/Awesome-Forgetting-in-Deep-Learning}

    Towards Scalable, Private and Practical Deep Learning

    Get PDF
    Deep Learning (DL) models have drastically improved the performance of Artificial Intelligence (AI) tasks such as image recognition, word prediction, translation, among many others, on which traditional Machine Learning (ML) models fall short. However, DL models are costly to design, train, and deploy due to their computing and memory demands. Designing DL models usually requires extensive expertise and significant manual tuning efforts. Even with the latest accelerators such as Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU), training DL models can take prohibitively long time, therefore training large DL models in a distributed manner is a norm. Massive amount of data is made available thanks to the prevalence of mobile and internet-of-things (IoT) devices. However, regulations such as HIPAA and GDPR limit the access and transmission of personal data to protect security and privacy. Therefore, enabling DL model training in a decentralized but private fashion is urgent and critical. Deploying trained DL models in a real world environment usually requires meeting Quality of Service (QoS) standards, which makes adaptability of DL models an important yet challenging matter.  In this dissertation, we aim to address the above challenges to make a step towards scalable, private, and practical deep learning. To simplify DL model design, we propose Efficient Progressive Neural-Architecture Search (EPNAS) and FedCust to automatically design model architectures and tune hyperparameters, respectively. To provide efficient and robust distributed training while preserving privacy, we design LEASGD, TiFL, and HDFL. We further conduct a study on the security aspect of distributed learning by focusing on how data heterogeneity affects backdoor attacks and how to mitigate such threats. Finally, we use super resolution (SR) as an example application to explore model adaptability for cross platform deployment and dynamic runtime environment. Specifically, we propose DySR and AdaSR frameworks which enable SR models to meet QoS by dynamically adapting to available resources instantly and seamlessly without excessive memory overheads

    Heterogeneous Federated Learning: State-of-the-art and Research Challenges

    Full text link
    Federated learning (FL) has drawn increasing attention owing to its potential use in large-scale industrial applications. Existing federated learning works mainly focus on model homogeneous settings. However, practical federated learning typically faces the heterogeneity of data distributions, model architectures, network environments, and hardware devices among participant clients. Heterogeneous Federated Learning (HFL) is much more challenging, and corresponding solutions are diverse and complex. Therefore, a systematic survey on this topic about the research challenges and state-of-the-art is essential. In this survey, we firstly summarize the various research challenges in HFL from five aspects: statistical heterogeneity, model heterogeneity, communication heterogeneity, device heterogeneity, and additional challenges. In addition, recent advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed with an in-depth analysis of their pros and cons. We classify existing methods from three different levels according to the HFL procedure: data-level, model-level, and server-level. Finally, several critical and promising future research directions in HFL are discussed, which may facilitate further developments in this field. A periodically updated collection on HFL is available at https://github.com/marswhu/HFL_Survey.Comment: 42 pages, 11 figures, and 4 table

    Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

    Full text link
    Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on AI for edge, that is, the AI methods used in resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.Comment: 50 pages, 8 figures (Revised content in all sections, added figures and new section

    Towards Efficient Communications in Federated Learning: A Contemporary Survey

    Full text link
    In the traditional distributed machine learning scenario, the user's private data is transmitted between nodes and a central server, which results in great potential privacy risks. In order to balance the issues of data privacy and joint training of models, federated learning (FL) is proposed as a special distributed machine learning with a privacy protection mechanism, which can realize multi-party collaborative computing without revealing the original data. However, in practice, FL faces many challenging communication problems. This review aims to clarify the relationship between these communication problems, and focus on systematically analyzing the research progress of FL communication work from three perspectives: communication efficiency, communication environment, and communication resource allocation. Firstly, we sort out the current challenges existing in the communications of FL. Secondly, we have compiled articles related to FL communications, and then describe the development trend of the entire field guided by the logical relationship between them. Finally, we point out the future research directions for communications in FL
    • …
    corecore