16,710 research outputs found

    LightFR: Lightweight Federated Recommendation with Privacy-preserving Matrix Factorization

    Full text link
    Federated recommender system (FRS), which enables many local devices to train a shared model jointly without transmitting local raw data, has become a prevalent recommendation paradigm with privacy-preserving advantages. However, previous work on FRS performs similarity search via inner product in continuous embedding space, which causes an efficiency bottleneck when the scale of items is extremely large. We argue that such a scheme in federated settings ignores the limited capacities in resource-constrained user devices (i.e., storage space, computational overhead, and communication bandwidth), and makes it harder to be deployed in large-scale recommender systems. Besides, it has been shown that transmitting local gradients in real-valued form between server and clients may leak users' private information. To this end, we propose a lightweight federated recommendation framework with privacy-preserving matrix factorization, LightFR, that is able to generate high-quality binary codes by exploiting learning to hash technique under federated settings, and thus enjoys both fast online inference and economic memory consumption. Moreover, we devise an efficient federated discrete optimization algorithm to collaboratively train model parameters between the server and clients, which can effectively prevent real-valued gradient attacks from malicious parties. Through extensive experiments on four real-world datasets, we show that our LightFR model outperforms several state-of-the-art FRS methods in terms of recommendation accuracy, inference efficiency and data privacy.Comment: Accepted by ACM Transactions on Information Systems (TOIS

    HeteFedRec: Federated Recommender Systems with Model Heterogeneity

    Full text link
    Owing to the nature of privacy protection, federated recommender systems (FedRecs) have garnered increasing interest in the realm of on-device recommender systems. However, most existing FedRecs only allow participating clients to collaboratively train a recommendation model of the same public parameter size. Training a model of the same size for all clients can lead to suboptimal performance since clients possess varying resources. For example, clients with limited training data may prefer to train a smaller recommendation model to avoid excessive data consumption, while clients with sufficient data would benefit from a larger model to achieve higher recommendation accuracy. To address the above challenge, this paper introduces HeteFedRec, a novel FedRec framework that enables the assignment of personalized model sizes to participants. In HeteFedRec, we present a heterogeneous recommendation model aggregation strategy, including a unified dual-task learning mechanism and a dimensional decorrelation regularization, to allow knowledge aggregation among recommender models of different sizes. Additionally, a relation-based ensemble knowledge distillation method is proposed to effectively distil knowledge from heterogeneous item embeddings. Extensive experiments conducted on three real-world recommendation datasets demonstrate the effectiveness and efficiency of HeteFedRec in training federated recommender systems under heterogeneous settings

    FedRec+: Enhancing Privacy and Addressing Heterogeneity in Federated Recommendation Systems

    Full text link
    Preserving privacy and reducing communication costs for edge users pose significant challenges in recommendation systems. Although federated learning has proven effective in protecting privacy by avoiding data exchange between clients and servers, it has been shown that the server can infer user ratings based on updated non-zero gradients obtained from two consecutive rounds of user-uploaded gradients. Moreover, federated recommendation systems (FRS) face the challenge of heterogeneity, leading to decreased recommendation performance. In this paper, we propose FedRec+, an ensemble framework for FRS that enhances privacy while addressing the heterogeneity challenge. FedRec+ employs optimal subset selection based on feature similarity to generate near-optimal virtual ratings for pseudo items, utilizing only the user's local information. This approach reduces noise without incurring additional communication costs. Furthermore, we utilize the Wasserstein distance to estimate the heterogeneity and contribution of each client, and derive optimal aggregation weights by solving a defined optimization problem. Experimental results demonstrate the state-of-the-art performance of FedRec+ across various reference datasets.Comment: Accepted by 59th Annual Allerton Conference on Communication, Control, and Computin

    Vertical Federated Graph Neural Network for Recommender System

    Full text link
    Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.Comment: 17 pages, 9 figure

    Optimisation using Natural Language Processing: Personalized Tour Recommendation for Museums

    Full text link
    This paper proposes a new method to provide personalized tour recommendation for museum visits. It combines an optimization of preference criteria of visitors with an automatic extraction of artwork importance from museum information based on Natural Language Processing using textual energy. This project includes researchers from computer and social sciences. Some results are obtained with numerical experiments. They show that our model clearly improves the satisfaction of the visitor who follows the proposed tour. This work foreshadows some interesting outcomes and applications about on-demand personalized visit of museums in a very near future.Comment: 8 pages, 4 figures; Proceedings of the 2014 Federated Conference on Computer Science and Information Systems pp. 439-44

    A Federated Recommender System for Online Learning Environments

    Get PDF
    From e-commerce to social networking sites, recommender systems are gaining more and more interest. They provide connections, news, resources, or products of interest. This paper presents a federated recommender system, which exploits data from different online learning platforms and delivers personalized recommendation. The underlying educational objective is to enable academic institutions to provide a Web 2.0 dashboard bringing together open resources from the Cloud and proprietary content from in-house learning management systems. The paper describes the main aspects of the federated recommender system, including its adopted architecture, the common data model used to harvest the different learning platforms, the recommendation algorithm, as well as the recommendation display widget
    • …
    corecore