55 research outputs found

    Spiking Neural Networks -- Part III: Neuromorphic Communications

    Full text link
    Synergies between wireless communications and artificial intelligence are increasingly motivating research at the intersection of the two fields. On the one hand, the presence of more and more wirelessly connected devices, each with its own data, is driving efforts to export advances in machine learning (ML) from high performance computing facilities, where information is stored and processed in a single location, to distributed, privacy-minded, processing at the end user. On the other hand, ML can address algorithm and model deficits in the optimization of communication protocols. However, implementing ML models for learning and inference on battery-powered devices that are connected via bandwidth-constrained channels remains challenging. This paper explores two ways in which Spiking Neural Networks (SNNs) can help address these open problems. First, we discuss federated learning for the distributed training of SNNs, and then describe the integration of neuromorphic sensing, SNNs, and impulse radio technologies for low-power remote inference.Comment: Submitte

    Sharing Leaky-Integrate-and-Fire Neurons for Memory-Efficient Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have gained increasing attention as energy-efficient neural networks owing to their binary and asynchronous computation. However, their non-linear activation, that is Leaky-Integrate-and-Fire (LIF) neuron, requires additional memory to store a membrane voltage to capture the temporal dynamics of spikes. Although the required memory cost for LIF neurons significantly increases as the input dimension goes larger, a technique to reduce memory for LIF neurons has not been explored so far. To address this, we propose a simple and effective solution, EfficientLIF-Net, which shares the LIF neurons across different layers and channels. Our EfficientLIF-Net achieves comparable accuracy with the standard SNNs while bringing up to ~4.3X forward memory efficiency and ~21.9X backward memory efficiency for LIF neurons. We conduct experiments on various datasets including CIFAR10, CIFAR100, TinyImageNet, ImageNet-100, and N-Caltech101. Furthermore, we show that our approach also offers advantages on Human Activity Recognition (HAR) datasets, which heavily rely on temporal information

    PrivateSNN: Privacy-Preserving Spiking Neural Networks

    Full text link
    How can we bring both privacy and energy-efficiency to a neural system? In this paper, we propose PrivateSNN, which aims to build low-power Spiking Neural Networks (SNNs) from a pre-trained ANN model without leaking sensitive information contained in a dataset. Here, we tackle two types of leakage problems: 1) Data leakage is caused when the networks access real training data during an ANN-SNN conversion process. 2) Class leakage is caused when class-related features can be reconstructed from network parameters. In order to address the data leakage issue, we generate synthetic images from the pre-trained ANNs and convert ANNs to SNNs using the generated images. However, converted SNNs remain vulnerable to class leakage since the weight parameters have the same (or scaled) value with respect to ANN parameters. Therefore, we encrypt SNN weights by training SNNs with a temporal spike-based learning rule. Updating weight parameters with temporal data makes SNNs difficult to be interpreted in the spatial domain. We observe that the encrypted PrivateSNN eliminates data and class leakage issues with a slight performance drop (less than ~2) and significant energy-efficiency gain (about 55x) compared to the standard ANN. We conduct extensive experiments on various datasets including CIFAR10, CIFAR100, and TinyImageNet, highlighting the importance of privacy-preserving SNN training.Comment: Accepted to AAAI202

    Towards Efficient and Trustworthy AI Through Hardware-Algorithm-Communication Co-Design

    Full text link
    Artificial intelligence (AI) algorithms based on neural networks have been designed for decades with the goal of maximising some measure of accuracy. This has led to two undesired effects. First, model complexity has risen exponentially when measured in terms of computation and memory requirements. Second, state-of-the-art AI models are largely incapable of providing trustworthy measures of their uncertainty, possibly `hallucinating' their answers and discouraging their adoption for decision-making in sensitive applications. With the goal of realising efficient and trustworthy AI, in this paper we highlight research directions at the intersection of hardware and software design that integrate physical insights into computational substrates, neuroscientific principles concerning efficient information processing, information-theoretic results on optimal uncertainty quantification, and communication-theoretic guidelines for distributed processing. Overall, the paper advocates for novel design methodologies that target not only accuracy but also uncertainty quantification, while leveraging emerging computing hardware architectures that move beyond the traditional von Neumann digital computing paradigm to embrace in-memory, neuromorphic, and quantum computing technologies. An important overarching principle of the proposed approach is to view the stochasticity inherent in the computational substrate and in the communication channels between processors as a resource to be leveraged for the purpose of representing and processing classical and quantum uncertainty

    Energy-Efficient On-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing

    Full text link
    The latest satellite communication (SatCom) missions are characterized by a fully reconfigurable on-board software-defined payload, capable of adapting radio resources to the temporal and spatial variations of the system traffic. As pure optimization-based solutions have shown to be computationally tedious and to lack flexibility, machine learning (ML)-based methods have emerged as promising alternatives. We investigate the application of energy-efficient brain-inspired ML models for on-board radio resource management. Apart from software simulation, we report extensive experimental results leveraging the recently released Intel Loihi 2 chip. To benchmark the performance of the proposed model, we implement conventional convolutional neural networks (CNN) on a Xilinx Versal VCK5000, and provide a detailed comparison of accuracy, precision, recall, and energy efficiency for different traffic demands. Most notably, for relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100×\times as compared to the CNN-based reference platform. Our findings point to the significant potential of neuromorphic computing and SNNs in supporting on-board SatCom operations, paving the way for enhanced efficiency and sustainability in future SatCom systems.Comment: currently under review at IEEE Transactions on Machine Learning in Communications and Networkin

    Dimensions of Timescales in Neuromorphic Computing Systems

    Get PDF
    This article is a public deliverable of the EU project "Memory technologies with multi-scale time constants for neuromorphic architectures" (MeMScales, https://memscales.eu, Call ICT-06-2019 Unconventional Nanoelectronics, project number 871371). This arXiv version is a verbatim copy of the deliverable report, with administrative information stripped. It collects a wide and varied assortment of phenomena, models, research themes and algorithmic techniques that are connected with timescale phenomena in the fields of computational neuroscience, mathematics, machine learning and computer science, with a bias toward aspects that are relevant for neuromorphic engineering. It turns out that this theme is very rich indeed and spreads out in many directions which defy a unified treatment. We collected several dozens of sub-themes, each of which has been investigated in specialized settings (in the neurosciences, mathematics, computer science and machine learning) and has been documented in its own body of literature. The more we dived into this diversity, the more it became clear that our first effort to compose a survey must remain sketchy and partial. We conclude with a list of insights distilled from this survey which give general guidelines for the design of future neuromorphic systems

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure

    Local learning algorithms for stochastic spiking neural networks

    Get PDF
    This dissertation focuses on the development of machine learning algorithms for spiking neural networks, with an emphasis on local three-factor learning rules that are in keeping with the constraints imposed by current neuromorphic hardware. Spiking neural networks (SNNs) are an alternative to artificial neural networks (ANNs) that follow a similar graphical structure but use a processing paradigm more closely modeled after the biological brain in an effort to harness its low power processing capability. SNNs use an event based processing scheme which leads to significant power savings when implemented in dedicated neuromorphic hardware such as Intel’s Loihi chip. This work is distinguished by the consideration of stochastic SNNs based on spiking neurons that employ a stochastic spiking process, implementing generalized linear models (GLM) rather than deterministic thresholded spiking. In this framework, the spiking signals are random variables which may be sampled from a distribution defined by the neurons. The spiking signals may be observed or latent variables, with neurons whose outputs are observed termed visible neurons and otherwise termed hidden neurons. This choice provides a strong mathematical basis for maximum likelihood optimization of the network parameters via stochastic gradient descent, avoiding the issue of gradient backpropagation through the discontinuity created by the spiking process. Three machine learning algorithms are developed for stochastic SNNs with a focus on power efficiency, learning efficiency and model adaptability; characteristics that are valuable in resource constrained settings. They are studied in the context of applications where low power learning on the edge is key. All of the learning rules that are derived include only local variables along with a global learning signal, making these algorithms tractable to implementation in current neuromorphic hardware. First, a stochastic SNN that includes only visible neurons, the simplest case for probabilistic optimization, is considered. A policy gradient reinforcement learning (RL) algorithm is developed in which the stochastic SNN defines the policy, or state-action distribution, of an RL agent. Action choices are sampled directly from the policy by interpreting the outputs of the read-out neurons using a first to spike decision rule. This study highlights the power efficiency of the SNN in terms of spike frequency. Next, an online meta-learning framework is proposed with the goal of progressively improving the learning efficiency of an SNN over a stream of tasks. In this setting, SNNs including both hidden and visible neurons are considered, posing a more complex maximum likelihood learning problem that is solved using a variational learning method. The meta-learning rule yields a hyperparameter initialization for SNN models that supports fast adaptation of the model to individualized data on edge devices. Finally, moving away from the supervised learning paradigm, a hybrid adver-sarial training framework for SNNs, termed SpikeGAN, is developed. Rather than optimize for the likelihood of target spike patterns at the SNN outputs, the training is mediated by an auxiliary discriminator that provides a measure of how similar the spiking data is to a target distribution. Because no direct spiking patterns are given, the SNNs considered in adversarial learning include only hidden neurons. A Bayesian adaptation of the SpikeGAN learning rule is developed to broaden the range of temporal data that a single SpikeGAN can estimate. Additionally, the online meta-learning rule is extended to include meta-learning for SpikeGAN, to enable efficient generation of data from sequential data distributions
    • …
    corecore