599 research outputs found

    Using Open Stack for an Open Cloud Exchange(OCX)

    Full text link
    We are developing a new public cloud, the Massachusetts Open Cloud (MOC) based on the model of an Open Cloud eXchange (OCX). We discuss in this paper the vision of an OCX and how we intend to realize it using the OpenStack open-source cloud platform in the MOC. A limited form of an OCX can be achieved today by layering new services on top of OpenStack. We have performed an analysis of OpenStack to determine the changes needed in order to fully realize the OCX model. We describe these proposed changes, which although significant and requiring broad community involvement will provide functionality of value to both existing single-provider clouds as well as future multi-provider ones

    Towards an open cloud marketplace: vision and first steps

    Full text link
    As one of the most promising, emerging concepts in Information Technology (IT), cloud computing is transforming how IT is consumed and managed; yielding improved cost efficiencies, and delivering flexible, on-demand scalability by reducing computing infrastructures, platforms, and services to commodities acquired and paid-for on-demand through a set of cloud providers. Today, the transition of cloud computing from a subject of research and innovation to a critical infrastructure is proceeding at an incredibly fast pace. A potentially dangerous consequence of this speedy transition to practice is the premature adoption, and ossification, of the models, technologies, and standards underlying this critical infrastructure. This state of affairs is exacerbated by the fact that innovative research on production-scale platforms is becoming the purview of a small number of public cloud providers. Specifically, the academic research communities are effectively excluded from the opportunity to contribute meaningfully to the evolution not to mention innovation and healthy mutation of cloud computing technologies. As the dependence on our society and economy on cloud computing increases, so does the realization that the academic research community cannot be shut out from contributing to the design and evolution of this critical infrastructure. In this article we provide an alternative vision that of an Open Cloud eXchange (OCX) a public cloud marketplace, where many stakeholders, rather than just a single cloud provider, participate in implementing and operating the cloud, thus creating an ecosystem that will bring the innovation of a broader community to bear on a much healthier and more efficient cloud marketplace

    BEACON: A Cloud Network Federation Framework

    Get PDF
    This paper presents the BEACON Framework, which will enable the provision and management of cross-site virtual networks for federated cloud infrastructures in order to support the automated deployment of applications and services across different clouds and datacenters. The proposed framework will support different federation architectures, going from tightly coupled (datacenter federation) to loosely coupled (cloud federation and multi-cloud orchestration) architectures, and will enable the creation of Layer 2 and Layer 3 overlay networks to interconnect remote resources located at different cloud sites. A high level description of the main components of the BEACON framework is also introduced

    CYCLONE Unified Deployment and Management of Federated, Multi-Cloud Applications

    Full text link
    Various Cloud layers have to work in concert in order to manage and deploy complex multi-cloud applications, executing sophisticated workflows for Cloud resource deployment, activation, adjustment, interaction, and monitoring. While there are ample solutions for managing individual Cloud aspects (e.g. network controllers, deployment tools, and application security software), there are no well-integrated suites for managing an entire multi cloud environment with multiple providers and deployment models. This paper presents the CYCLONE architecture that integrates a number of existing solutions to create an open, unified, holistic Cloud management platform for multi-cloud applications, tailored to the needs of research organizations and SMEs. It discusses major challenges in providing a network and security infrastructure for the Intercloud and concludes with the demonstration how the architecture is implemented in a real life bioinformatics use case

    Interoperable Federated Cloud Networking

    Get PDF
    The BEACON framework enables the provision of federated cloud infrastructures, with special emphasis on inter-cloud networking and security issues, to support the automated deployment of applications and services across different clouds and datacenters. BEACON is distributed as open source (see http://github.com/BeaconFramework) and some enhancements are being contributed to the OpenNebula and OpenStack cloud management platforms

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Towards distributed architecture for collaborative cloud services in community networks

    Get PDF
    Internet and communication technologies have lowered the costs for communities to collaborate, leading to new services like user-generated content and social computing, and through collaboration, collectively built infrastructures like community networks have also emerged. Community networks get formed when individuals and local organisations from a geographic area team up to create and run a community-owned IP network to satisfy the community’s demand for ICT, such as facilitating Internet access and providing services of local interest. The consolidation of today’s cloud technologies offers now the possibility of collectively built community clouds, building upon user-generated content and user-provided networks towards an ecosystem of cloud services. To address the limitation and enhance utility of community networks, we propose a collaborative distributed architecture for building a community cloud system that employs resources contributed by the members of the community network for provisioning infrastructure and software services. Such architecture needs to be tailored to the specific social, economic and technical characteristics of the community networks for community clouds to be successful and sustainable. By real deployments of clouds in community networks and evaluation of application performance, we show that community clouds are feasible. Our result may encourage collaborative innovative cloud-based services made possible with the resources of a community.Peer ReviewedPostprint (author’s final draft

    A Ring to Rule Them All - Revising OpenStack Internals to Operate Massively Distributed Clouds: The Discovery Initiative - Where Do We Are ?

    Get PDF
    STACK_HCERES2020The deployment of micro/nano data-centers in network point of presence offers an opportunity to deliver a more sustainable and efficient infrastructure for Cloud Computing. Among the different challenges we need to address to favor the adoption of such a model, the development of a system in charge of turning such a complex and diverse network of resources into a collection of abstracted computing facilities that are convenient to administrate and use is critical.In this report, we introduce the premises of such a system. The novelty of our work is that instead of developing a system from scratch, we revised the OpenStack solution in order to operate such an infrastructure in a distributed manner leveraging P2P mechanisms. More precisely, we describe how we revised the Nova service by leveraging a distributed key/value store instead of the centralized SQL backend. We present experiments that validated the correct behavior of our prototype, while having promising performance using several clusters composed of servers of the Grid’5000 testbed. We believe that such a strategy is promising and paves the way to a first large-scale and WAN-wide IaaS manager.La tendance actuelle pour supporter la demande croissante d'informatique utilitaire consiste à construire des centres de données de plus en plus grands, dans un nombre limité de lieux stratégiques. Cette approche permet sans aucun doute de satisfaire la demande actuelle tout en conservant une approche centralisée de la gestion de ces ressources, mais elle reste loin de pouvoir fournir des infrastructures répondant aux contraintes actuelles et futures en termes d'efficacité, de juridiction ou encore de durabilité. L'objectif de l'initiative DISCOVERY est de concevoir le LUC OS, un système de gestion distribuée des ressources qui permettra de tirer parti de n'importe quel noeud réseau constituant la dorsale d'Internet afin de fournir une nouvelle génération d'informatique utilitaire, plus apte à prendre en compte la dispersion géographiquedes utilisateurs et leur demande toujours croissante.Après avoir rappelé les objectifs de l'initiative DISCOVERY et expliqué pourquoi les approches type fédération ne sont pas adaptées pour opérer une infrastructure d'informatique utilitaire intégrée au réseau, nous présentons les prémisses de notre système. Nous expliquerons notamment pourquoi et comment nous avons choisi de démarrer des travaux visant à revisiter la conception de la solution Openstack. De notre point de vue, choisir d'appuyer nos travaux sur cette solution est une stratégie judicieuse à la vue de la complexité des systèmes de gestion des plateformes IaaS et de la vélocité des solutions open-source

    Mitigating the effects of vendor lock-in in edge cloud environments with open-source technologies

    Get PDF
    Cloud computing has been in the center of attention recently. Its popularity has increased significantly. More and more companies decide to use a cloud for running their applications. However, this introduces certain problems, such as vendor lock-in. Without a widely used standard, the systems become incompatible with each other. This thesis introduces a way to reduce the risk of vendor lock-in and uses open source technologies in order to make it available to as many people as possible. The explored solution is easy-to-use and light-weight compared to other ones. Furthermore, the use of certain technologies over others is suggested in the thesis to further reduce the risks of being locked to a single cloud provider
    • …
    corecore