2,393 research outputs found

    Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data

    Full text link
    On-device machine learning (ML) enables the training process to exploit a massive amount of user-generated private data samples. To enjoy this benefit, inter-device communication overhead should be minimized. With this end, we propose federated distillation (FD), a distributed model training algorithm whose communication payload size is much smaller than a benchmark scheme, federated learning (FL), particularly when the model size is large. Moreover, user-generated data samples are likely to become non-IID across devices, which commonly degrades the performance compared to the case with an IID dataset. To cope with this, we propose federated augmentation (FAug), where each device collectively trains a generative model, and thereby augments its local data towards yielding an IID dataset. Empirical studies demonstrate that FD with FAug yields around 26x less communication overhead while achieving 95-98% test accuracy compared to FL.Comment: presented at the 32nd Conference on Neural Information Processing Systems (NIPS 2018), 2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2), Montr\'eal, Canad

    Learning From Drift: Federated Learning on Non-IID Data via Drift Regularization

    Full text link
    Federated learning algorithms perform reasonably well on independent and identically distributed (IID) data. They, on the other hand, suffer greatly from heterogeneous environments, i.e., Non-IID data. Despite the fact that many research projects have been done to address this issue, recent findings indicate that they are still sub-optimal when compared to training on IID data. In this work, we carefully analyze the existing methods in heterogeneous environments. Interestingly, we find that regularizing the classifier's outputs is quite effective in preventing performance degradation on Non-IID data. Motivated by this, we propose Learning from Drift (LfD), a novel method for effectively training the model in heterogeneous settings. Our scheme encapsulates two key components: drift estimation and drift regularization. Specifically, LfD first estimates how different the local model is from the global model (i.e., drift). The local model is then regularized such that it does not fall in the direction of the estimated drift. In the experiment, we evaluate each method through the lens of the five aspects of federated learning, i.e., Generalization, Heterogeneity, Scalability, Forgetting, and Efficiency. Comprehensive evaluation results clearly support the superiority of LfD in federated learning with Non-IID data

    Exploiting Personalized Invariance for Better Out-of-distribution Generalization in Federated Learning

    Full text link
    Recently, data heterogeneity among the training datasets on the local clients (a.k.a., Non-IID data) has attracted intense interest in Federated Learning (FL), and many personalized federated learning methods have been proposed to handle it. However, the distribution shift between the training dataset and testing dataset on each client is never considered in FL, despite it being general in real-world scenarios. We notice that the distribution shift (a.k.a., out-of-distribution generalization) problem under Non-IID federated setting becomes rather challenging due to the entanglement between personalized and spurious information. To tackle the above problem, we elaborate a general dual-regularized learning framework to explore the personalized invariance, compared with the exsiting personalized federated learning methods which are regularized by a single baseline (usually the global model). Utilizing the personalized invariant features, the developed personalized models can efficiently exploit the most relevant information and meanwhile eliminate spurious information so as to enhance the out-of-distribution generalization performance for each client. Both the theoretical analysis on convergence and OOD generalization performance and the results of extensive experiments demonstrate the superiority of our method over the existing federated learning and invariant learning methods, in diverse out-of-distribution and Non-IID data cases

    Privacy is What We Care About: Experimental Investigation of Federated Learning on Edge Devices

    Full text link
    Federated Learning enables training of a general model through edge devices without sending raw data to the cloud. Hence, this approach is attractive for digital health applications, where data is sourced through edge devices and users care about privacy. Here, we report on the feasibility to train deep neural networks on the Raspberry Pi4s as edge devices. A CNN, a LSTM and a MLP were successfully trained on the MNIST data-set. Further, federated learning is demonstrated experimentally on IID and non-IID samples in a parametric study, to benchmark the model convergence. The weight updates from the workers are shared with the cloud to train the general model through federated learning. With the CNN and the non-IID samples a test-accuracy of up to 85% could be achieved within a training time of 2 minutes, while exchanging less than 1010 MB data per device. In addition, we discuss federated learning from an use-case standpoint, elaborating on privacy risks and labeling requirements for the application of emotion detection from sound. Based on the experimental findings, we discuss possible research directions to improve model and system performance. Finally, we provide best practices for a practitioner, considering the implementation of federated learning.Comment: Accepted in ACM AIChallengeIoT 2019, New York, US

    Knowledge-Aware Federated Active Learning with Non-IID Data

    Full text link
    Federated learning enables multiple decentralized clients to learn collaboratively without sharing the local training data. However, the expensive annotation cost to acquire data labels on local clients remains an obstacle in utilizing local data. In this paper, we propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget while protecting data privacy in a decentralized learning way. The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the asynchronous local clients. This becomes even more significant when data is distributed non-IID across local clients. To address the aforementioned challenge, we propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU). KSAS is a novel active sampling method tailored for the federated active learning problem. It deals with the mismatch challenge by sampling actively based on the discrepancies between local and global models. KSAS intensifies specialized knowledge in local clients, ensuring the sampled data to be informative for both the local clients and the global model. KCFU, in the meantime, deals with the client heterogeneity caused by limited data and non-IID data distributions. It compensates for each client's ability in weak classes by the assistance of the global model. Extensive experiments and analyses are conducted to show the superiority of KSAS over the state-of-the-art active learning methods and the efficiency of KCFU under the federated active learning framework.Comment: 14 pages, 12 figure
    • …
    corecore