961 research outputs found

    The MammoGrid Project Grids Architecture

    Full text link
    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distributed execution of mammograms analysis software, for the development of Grid-aware algorithms and for the sharing of resources between multiple collaborating medical centres. All this is delivered via a novel software and hardware information infrastructure that, in addition guarantees the integrity and security of the medical data. The MammoGrid implementation is based on AliEn, a Grid framework developed by the ALICE Collaboration. AliEn provides a virtual file catalogue that allows transparent access to distributed data-sets and provides top to bottom implementation of a lightweight Grid applicable to cases when handling of a large number of files is required. This paper details the architecture that will be implemented by the MammoGrid project.Comment: Talk PSN MOAT0005 from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, 4 figure

    An Evaluation of the Use of a Clinical Research Data Warehouse and I2b2 Infrastructure to Facilitate Replication of Research

    Get PDF
    Replication of clinical research is requisite for forming effective clinical decisions and guidelines. While rerunning a clinical trial may be unethical and prohibitively expensive, the adoption of EHRs and the infrastructure for distributed research networks provide access to clinical data for observational and retrospective studies. Herein I demonstrate a means of using these tools to validate existing results and extend the findings to novel populations. I describe the process of evaluating published risk models as well as local data and infrastructure to assess the replicability of the study. I use an example of a risk model unable to be replicated as well as a study of in-hospital mortality risk I replicated using UNMC’s clinical research data warehouse. In these examples and other studies we have participated in, some elements are commonly missing or under-developed. One such missing element is a consistent and computable phenotype for pregnancy status based on data recorded in the EHR. I survey local clinical data and identify a number of variables correlated with pregnancy as well as demonstrate the data required to identify the temporal bounds of a pregnancy episode. Next, another common obstacle to replicating risk models is the necessity of linking to alternative data sources while maintaining data in a de-identified database. I demonstrate a pipeline for linking clinical data to socioeconomic variables and indices obtained from the American Community Survey (ACS). While these data are location-based, I provide a method for storing them in a HIPAA compliant fashion so as not to identify a patient’s location. While full and efficient replication of all clinical studies is still a future goal, the demonstration of replication as well as beginning the development of a computable phenotype for pregnancy and the incorporation of location based data in a de-identified data warehouse demonstrate how the EHR data and a research infrastructure may be used to facilitate this effort

    The Healthgrid White Paper

    Get PDF
    • …
    corecore