16,913 research outputs found

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition

    Full text link
    This paper presents a comparative study of two different methods, which are based on fusion and polar transformation of visual and thermal images. Here, investigation is done to handle the challenges of face recognition, which include pose variations, changes in facial expression, partial occlusions, variations in illumination, rotation through different angles, change in scale etc. To overcome these obstacles we have implemented and thoroughly examined two different fusion techniques through rigorous experimentation. In the first method log-polar transformation is applied to the fused images obtained after fusion of visual and thermal images whereas in second method fusion is applied on log-polar transformed individual visual and thermal images. After this step, which is thus obtained in one form or another, Principal Component Analysis (PCA) is applied to reduce dimension of the fused images. Log-polar transformed images are capable of handling complicacies introduced by scaling and rotation. The main objective of employing fusion is to produce a fused image that provides more detailed and reliable information, which is capable to overcome the drawbacks present in the individual visual and thermal face images. Finally, those reduced fused images are classified using a multilayer perceptron neural network. The database used for the experiments conducted here is Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. The second method has shown better performance, which is 95.71% (maximum) and on an average 93.81% as correct recognition rate.Comment: Proceedings of IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (IEEE CIBIM 2011), Paris, France, April 11 - 15, 201
    • …
    corecore