11 research outputs found

    Characterization of Retinal Ganglion Cell Responses to Electrical Stimulation Using White Noise

    Get PDF
    Retinitis pigmentosa and age-related macular degeneration are two leading causes of degenerative blindness. While there is still not a definitive course of treatment for either of these diseases, there is currently the world over, many different treatment strategies being explored. Of these various strategies, one of the most successful has been retinal implants. Retinal implants are microelectrode or photodiode arrays, that are implanted in the eye of a patient, to electrically stimulate the degenerating retina. Clinical trials have shown that many patients implanted with such a device, are able to regain a certain degree of functional vision. However, while the results of these ongoing clinical trials have been promising, there are still many technical challenges that need to be overcome. One of the biggest challenges facing present implants is the inability to preferentially stimulate different retinal pathways. This is because retinal implants use large-amplitude current or voltage pulses. This in turn leads to the indiscriminate activation of multiple classes of retinal ganglion cells (RGCs), and therefore, an overall reduction in the restored visual acuity. To tackle this issue, we decided to explore a novel stimulus paradigm, in which we present to the retina, a stream of smaller-amplitude subthreshold voltage pulses. By then correlating the retinal spikes to the stimuli preceding them, we calculate temporal input filters for various classes of RGCs, using a technique called spike-triggered averaging (STA). In doing this, we found that ON and OFF RGCs have electrical filters, which are very distinct from each other. This finding creates the possibility for the selective activation of the retina through the use of STA-based waveforms. Finally, using statistical models, we verify how well these temporal filters can predict RGC responses to novel electrical stimuli. In a broad sense, our work represents the successful application of systems engineering tools to retinal prosthetics, in an attempt to answer one of the field’s most difficult questions, namely selective stimulation of the retina

    Electrically-evoked responses for retinal prostheses are differentially altered depending on ganglion cell types in outer retinal neurodegeneration caused by Crb1 gene mutation

    Get PDF
    BackgroundMicroelectronic prostheses for artificial vision stimulate neurons surviving outer retinal neurodegeneration such as retinitis pigmentosa (RP). Yet, the quality of prosthetic vision substantially varies across subjects, maybe due to different levels of retinal degeneration and/or distinct genotypes. Although the RP genotypes are remarkably diverse, prosthetic studies have primarily used retinal degeneration (rd) 1 and 10 mice, which both have Pde6b gene mutation. Here, we report the electric responses arising in retinal ganglion cells (RGCs) of the rd8 mouse model which has Crb1 mutation.MethodsWe first investigated age-dependent histological changes of wild-type (wt), rd8, and rd10 mice retinas by H&E staining. Then, we used cell-attached patch clamping to record spiking responses of ON, OFF and direction selective (DS) types of RGCs to a 4-ms-long electric pulse. The electric responses of rd8 RGCs were analyzed in comparison with those of wt RGCs in terms of individual RGC spiking patterns, populational characteristics, and spiking consistency across trials.ResultsIn the histological examination, the rd8 mice showed partial retinal foldings, but the outer nuclear layer thicknesses remained comparable to those of the wt mice, indicating the early-stage of RP. Although spiking patterns of each RGC type seemed similar to those of the wt retinas, correlation levels between electric vs. light response features were different across the two mouse models. For example, in comparisons between light vs. electric response magnitudes, ON/OFF RGCs of the rd8 mice showed the same/opposite correlation polarity with those of wt mice, respectively. Also, the electric response spike counts of DS RGCs in the rd8 retinas showed a positive correlation with their direction selectivity indices (r = 0.40), while those of the wt retinas were negatively correlated (r = −0.90). Lastly, the spiking timing consistencies of late responses were largely decreased in both ON and OFF RGCs in the rd8 than the wt retinas, whereas no significant difference was found across DS RGCs of the two models.ConclusionOur results indicate the electric response features are altered depending on RGC types even from the early-stage RP caused by Crb1 mutation. Given the various degeneration patterns depending on mutation genes, our study suggests the importance of both genotype- and RGC type-dependent analyses for retinal prosthetic research

    RESTORING VISION USING HUMAN OPSINS

    Get PDF

    Réorganisation cérébrale consécutive à la perte tardive d'une partie ou de la totalité du champ visuel et à la restitution sensorielle : approche comportementale et par IRM fonctionnelle

    Get PDF
    Cerebral plasticity processes developing from late visual deficit are not fully understood. Insights into these mechanisms could improve the rehabilitation programs, provide the patients with new sensory substitution devices, and even predict the outcome of some vision restoration treatments. A variety of combined approaches should allow to better define these mechanisms. On the one hand, we investigated the functional connectivity (FC) of the brain by a resting-state fMRI analysis, and on the other hand we carried out a behavioral study. The selected subjects (1) had lost the peripheral visual field due to a pigmentary retinopathy and therefore holding a “tunnel vision”, (2) had lost the central visual field i.e. subjects suffering from central scotoma resulting from a Stargardt macular dystrophy, (3) became lately blind, as the result of pigmentary retinopathy terminal stage and (4) potentially visually-restored by a retinal prosthesis.(A) Resting-state functional connectivity studiesStudy 1. In subjects suffering from peripheral or complete visual loss, we studied the FC of visual and language areas. We found an increased FC in Broca’s and specific visually deprived areas in both groups of patients as compared to sighted controls. Therefore, the plasticity between the visual and language systems can develop in the adult brain i.e. long after the end of a developmental sensitive period, following not only total but also partial visual deprivation. These data also contribute to the debate about the development of such plasticity in the late blind. Furthermore, they reshape the conditions of vision and language systems plasticity, which is (1) constrained to visually deafferented regions and (2) possible even in presence of a residual vision.Study 2. In subjects with converse central or peripheral visual field defects, we studied the FC of V1 subregions – onto which the central visual field (cV1) and the peripheral visual field (pV1) are projected, with the rest of the brain. The results showed an increased FC of (1) tunnel vision subjects afferented region (cV1) with regions involved in space, scene processing and multisensory integration and (2) central scotoma subjects afferented region (pV1) with regions involved in face perception. Moreover, an increased FC was observed between deafferented regions and regions involved in high-order functions and top-down mechanisms. These findings suggest that the afferented regions of V1 strengthen the connections with regions involved in deficient visual functions, whereas the sensory-deafferented V1 tunes-up preexisting high-order mechanisms to assist vision. These data bring new information about the plasticity in sub-regions of V1 that develops to process various functions, following partial visual loss.(B) Behavioural study of blind subjects fitted with a retinal prosthesis Study 3. We finally examined the adaptive behavior of subjects suffering from pigmentary retinopathy fitted with a camera-connected retinal prosthesis for 4 years. Such a device can potentially lead to dissociation between eyes and head-mounted camera; this is incompatible with physiological mechanisms of the spatial localization of visualized images, which depend on the gaze direction. This kind of dissociation is expected to alter the visuomotor coordination in subjects fitted with the considered retinal prosthesis device. We observed that misalignments between gaze and head (i.e. camera) positions occur during visual search, and could not be prevented when following vestibulo-ocular reflexes. This misalignment leads to the illusion of a visual target movement, and affects the visuo-motor coordination that was quantified in this study. After 4 years of current use of their device, the subjects develop compensatory strategies that partially solve these issues.Les processus de plasticitĂ© cĂ©rĂ©brale consĂ©cutifs Ă  un dĂ©ficit visuel survenu tardivement sont encore peu connus. En comprendre les mĂ©canismes est pourtant essentiel Ă  l'optimisation de mĂ©thodes de rĂ©Ă©ducation des sujets atteints, au dĂ©veloppement de dispositifs visant Ă  substituer l'information normalement apportĂ©e par la modalitĂ© dĂ©ficiente, par celle d'une autre modalitĂ© sensorielle, et Ă  la conception de systĂšmes permettant de restaurer une certaine fonction visuelle. Afin d'Ă©tudier ces processus, nous avons choisi d'une part, d'analyser la connectivitĂ© fonctionnelle du cerveau Ă  l'Ă©tat de repos par imagerie par rĂ©sonance magnĂ©tique fonctionnelle (IRMf), et d'autre part de les explorer par une approche comportementale. Les sujets Ă©tudiĂ©s avaient soit sĂ©lectivement perdu (1) la pĂ©riphĂ©rie du champ visuel, Ă  la suite d'une rĂ©tinopathie pigmentaire au stade de " vision tunnellaire ", ou (2) le centre du champ visuel, c'est-Ă -dire souffrant d'un scotome central des suites d'une dĂ©gĂ©nĂ©rescence maculaire de Stargardt soit (3) l'intĂ©gralitĂ© du champ visuel, au stade terminal d'une rĂ©tinopathie pigmentaire et (4) Ă©taient Ă©ventuellement porteurs d'un systĂšme de prothĂšse rĂ©tinienne. (A) Études de la connectivitĂ© fonctionnelle par IRMf de repos Étude 1. Chez des sujets tardivement atteints dans la pĂ©riphĂ©rie ou dans la totalitĂ© du champ visuel, nous avons Ă©tudiĂ© la connectivitĂ© fonctionnelle de l'aire de Broca et des aires visuelles. ComparĂ©e Ă  celle des sujets sains, la connectivitĂ© fonctionnelle de ces patients est accrue entre l’aire de Broca et, dans V1, les parties privĂ©es d’affĂ©rences visuelles. Ainsi, Ă  la suite d’une privation visuelle totale ou sectorielle, un processus plastique entre les systĂšmes de la vision et du langage peut se produire chez l’adulte, au-delĂ  donc de la pĂ©riode sensible du dĂ©veloppement. Ces donnĂ©es apportent aussi une contribution au dĂ©bat sur la possibilitĂ© d’une telle plasticitĂ© chez le sujet devenu tardivement aveugle. Elles permettent, par ailleurs, de dĂ©finir les conditions qui accompagnent la plasticitĂ© des systĂšmes de la vision et du langage, c’est-Ă -dire d’une part le confinement de son dĂ©veloppement au niveau des rĂ©gions visuelles dĂ©saffĂ©rentĂ©es et d’autre part la possibilitĂ© de son dĂ©veloppement alors qu’une partie de la vision est encore fonctionnelle. Étude 2. Chez des sujets prĂ©sentant des atteintes du champ visuel pĂ©riphĂ©rique ou central, nous avons analysĂ© la connectivitĂ© fonctionnelle des parties de V1 oĂč se projettent respectivement le champ visuel central (V1 centrale) et le champ visuel pĂ©riphĂ©rique (V1 pĂ©riphĂ©rique) avec les autres rĂ©gions du cerveau. ComparĂ©e Ă  celle des sujets sains, nous avons observĂ© une augmentation de la connectivitĂ© fonctionnelle entre (1) la rĂ©gion affĂ©rentĂ©e des sujets avec vision tunnellaire (V1 centrale) et des rĂ©gions impliquĂ©es dans le traitement des scĂšnes, de l’espace et de l’intĂ©gration multisensorielle, et (2) la rĂ©gion affĂ©rentĂ©e des sujets avec scotome central (V1 pĂ©riphĂ©rique) et des rĂ©gions notamment impliquĂ©es dans la perception des visages. Quant aux rĂ©gions dĂ©saffĂ©rentĂ©es (V1 pĂ©riphĂ©rique pour les sujets avec vision tunnellaire et V1 centrale pour les sujets avec scotome central), nous leur avons trouvĂ© une connectivitĂ© fonctionnelle accrue avec des rĂ©gions impliquĂ©es dans des fonctions supĂ©rieures et des mĂ©canismes top-down. Il apparaĂźt que les rĂ©gions encore affĂ©rentĂ©es de V1 renforcent leurs connexions avec des rĂ©gions cĂ©rĂ©brales dont les fonctions sont altĂ©rĂ©es par la dĂ©saffĂ©rentation de l’autre partie de V1, alors que les rĂ©gions visuelles dĂ©saffĂ©rentĂ©es modulent des mĂ©canismes de haut-niveau, prĂ©existants, dans la probable intention de soutenir la vision rĂ©siduelle de ces sujets. Ces donnĂ©es apportent des informations nouvelles sur l’adaptation plastique des rĂ©gions de V1 au traitement de diverses fonctions, suite Ă  la perte d’un secteur pĂ©rimĂ©trique
    corecore