5,193 research outputs found

    Referred Sensation Areas in Bilateral Upper Limb Amputee

    Get PDF

    Referred Sensation Areas in a Bilateral Toes Amputee

    Get PDF
    Various mechanisms in generating phantom limb pain (PLP) have been hypothesized in the literature. However, there still is no clear understanding of how PLP develops and why it presents. Amputation leads to permanent anatomical and physiological changes of the neural path previously supplying the brain with sensory input, as well as to formation of referred sensation areas (RSAs) on the stump or its vicinity. Sensations may be evoked in the lost body part upon stimulation of RSAs that may be exploited as artificial sensory input. In this work, we present the analysis of RSA maps from a 45-year-old female with bilateral toes amputation. Maps of the RSAs were identified in eight sessions over 107 days, characterized by dynamics in both location and type of associated evoked sensation. The evoked sensations were reported to be felt like current through and brushing of the phantom toes at low intensities close to the sensation threshold. Sensations evoked by electrical stimuli delivered through electrodes covering one or more RSAs approximated the sensation of summation of sensations evoked by mechanical stimuli (light brushing). No painful evoked sensations were observed

    Shifting the Focus: The Role of Presence in Reconceptualising the Design Process

    Get PDF
    In this paper the relationship between presence and imaging is examined with the view to establish how our understanding of imaging, and subsequently the design process, may be reconceptualised to give greater focus to its experiential potential. First, the paper outlines the research project contributing to the discussion. Then, it provides brief overviews of research on both imaging and presence in the process highlighting the narrow conceptions of imaging (and the recognition of the need for further research) compared to the more holistic and experiential understandings of presence. The paper concludes with an argument and proposed study for exploring the role of digital technology and presence in extending the potential of imaging and its role in the design process. As indicated in the DRS Conference Theme, this paper focuses “
on what people experience and the systems and actions that create those experiences.” Interface designers, information architects and interactive media artists understand the powerful influence of experience in design. ‘Experience design’ is a community of practice driven by individuals within digital based disciplines where the belief is that understanding people is essential to any successful design in any medium and that “
experience is the personal connection with the moment and
 every aspect of living is an experience, whether we are the creators or simply chance participants” (Shedroff, 2001, p. 5). Keywords: Design, Design Process, Presence, Imaging, Grounded Theory</p

    Gamma Band Oscillation Response to Somatosensory Feedback Stimulation Schemes Constructed on Basis of Biphasic Neural Touch Representation

    Get PDF
    abstract: Prosthetic users abandon devices due to difficulties performing tasks without proper graded or interpretable feedback. The inability to adequately detect and correct error of the device leads to failure and frustration. In advanced prostheses, peripheral nerve stimulation can be used to deliver sensations, but standard schemes used in sensorized prosthetic systems induce percepts inconsistent with natural sensations, providing limited benefit. Recent uses of time varying stimulation strategies appear to produce more practical sensations, but without a clear path to pursue improvements. This dissertation examines the use of physiologically based stimulation strategies to elicit sensations that are more readily interpretable. A psychophysical experiment designed to investigate sensitivities to the discrimination of perturbation direction within precision grip suggests that perception is biomechanically referenced: increased sensitivities along the ulnar-radial axis align with potential anisotropic deformation of the finger pad, indicating somatosensation uses internal information rather than environmental. Contact-site and direction dependent deformation of the finger pad activates complimentary fast adapting and slow adapting mechanoreceptors, exhibiting parallel activity of the two associate temporal patterns: static and dynamic. The spectrum of temporal activity seen in somatosensory cortex can be explained by a combined representation of these distinct response dynamics, a phenomenon referred in this dissertation to “biphasic representation.” In a reach-to-precision-grasp task, neurons in somatosensory cortex were found to possess biphasic firing patterns in their responses to texture, orientation, and movement. Sensitivities seem to align with variable deformation and mechanoreceptor activity: movement and smooth texture responses align with potential fast adapting activation, non-movement and coarse texture responses align with potential increased slow adapting activation, and responses to orientation are conceptually consistent with coding of tangential load. Using evidence of biphasic representations’ association with perceptual priorities, gamma band phase locking is used to compare responses to peripheral nerve stimulation patterns and mechanical stimulation. Vibrotactile and punctate mechanical stimuli are used to represent the practical and impractical percepts commonly observed in peripheral nerve stimulation feedback. Standard patterns of constant parameters closely mimic impractical vibrotactile stimulation while biphasic patterns better mimic punctate stimulation and provide a platform to investigate intragrip dynamics representing contextual activation.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201

    Modulation of Sensory Perceptions and Cortical Responses Following TENS

    Get PDF

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Specificity and coherence of body representations

    Get PDF
    Bodily illusions differently affect body representations underlying perception and action. We investigated whether this task dependence reflects two distinct dimensions of embodiment: the sense of agency and the sense of the body as a coherent whole. In experiment 1 the sense of agency was manipulated by comparing active versus passive movements during the induction phase in a video rubber hand illusion (vRHI) setup. After induction, proprioceptive biases were measured both by perceptual judgments of hand position, as well as by measuring end-point accuracy of subjects' active pointing movements to an external object with the affected hand. The results showed, first, that the vRHI is largely perceptual: passive perceptual localisation judgments were altered, but end-point accuracy of active pointing responses with the affected hand to an external object was unaffected. Second, within the perceptual judgments, there was a novel congruence effect, such that perceptual biases were larger following passive induction of vRHI than following active induction. There was a trend for the converse effect for pointing responses, with larger pointing bias following active induction. In experiment 2, we used the traditional RHI to investigate the coherence of body representation by synchronous stimulation of either matching or mismatching fingers on the rubber hand and the participant's own hand. Stimulation of matching fingers induced a local proprioceptive bias for only the stimulated finger, but did not affect the perceived shape of the hand as a whole. In contrast, stimulation of spatially mismatching fingers eliminated the RHI entirely. The present results show that (i) the sense of agency during illusion induction has specific effects, depending on whether we represent our body for perception or to guide action, and (ii) representations of specific body parts can be altered without affecting perception of the spatial configuration of the body as a whole

    From rubber hands to neuroprosthetics: Neural correlates of embodiment

    Get PDF
    © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Our interaction with the world rests on the knowledge that we are a body in space and time, which can interact with the environment. This awareness is usually referred to as sense of embodiment. For the good part of the past 30 years, the rubber hand illusion (RHI) has been a prime tool to study embodiment in healthy and people with a variety of clinical conditions. In this paper, we provide a critical overview of this research with a focus on the RHI paradigm as a tool to study prothesis embodiment in individuals with amputation. The RHI relies on well-documented multisensory integration mechanisms based on sensory precision, where parietal areas are involved in resolving the visuo-tactile conflict, and premotor areas in updating the conscious bodily representation. This mechanism may be transferable to prosthesis ownership in amputees. We discuss how these results might transfer to technological development of sensorised prostheses, which in turn might progress the acceptability by users.Peer reviewe

    Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

    Get PDF
    • 

    corecore