84,201 research outputs found

    Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images

    Get PDF
    Assessment of morphological features of megakaryocytes (special kind of cells) in bone marrow trephine biopsies play an important role in the classification of different subtypes of Philadelphia-chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs). In order to aid hematopathologists in the study of megakaryocytes, we propose a novel framework that can efficiently delineate the nuclei and cytoplasm of these cells in digitized images of bone marrow trephine biopsies. The framework first employs a supervised machine learning approach that utilizes color and texture features to delineate megakaryocytic nuclei. It then employs a novel dual-channel active contour model to delineate the boundary of megakaryocytic cytoplasm by using different deconvolved stain channels. Compared to other recent models, the proposed framework achieves accurate results for both megakaryocytic nuclear and cytoplasmic delineation

    A generic classification-based method for segmentation of nuclei in 3D images of early embryos

    Get PDF
    BACKGROUND: Studying how individual cells spatially and temporally organize within the embryo is a fundamental issue in modern developmental biology to better understand the first stages of embryogenesis. In order to perform high-throughput analyses in three-dimensional microscopic images, it is essential to be able to automatically segment, classify and track cell nuclei. Many 3D/4D segmentation and tracking algorithms have been reported in the literature. Most of them are specific to particular models or acquisition systems and often require the fine tuning of parameters. RESULTS: We present a new automatic algorithm to segment and simultaneously classify cell nuclei in 3D/4D images. Segmentation relies on training samples that are interactively provided by the user and on an iterative thresholding process. This algorithm can correctly segment nuclei even when they are touching, and remains effective under temporal and spatial intensity variations. The segmentation is coupled to a classification of nuclei according to cell cycle phases, allowing biologists to quantify the effect of genetic perturbations and drug treatments. Robust 3D geometrical shape descriptors are used as training features for classification. Segmentation and classification results of three complete datasets are presented. In our working dataset of the Caenorhabditis elegans embryo, only 21 nuclei out of 3,585 were not detected, the overall F-score for segmentation reached 0.99, and more than 95% of the nuclei were classified in the correct cell cycle phase. No merging of nuclei was found. CONCLUSION: We developed a novel generic algorithm for segmentation and classification in 3D images. The method, referred to as Adaptive Generic Iterative Thresholding Algorithm (AGITA), is freely available as an ImageJ plug-in

    Classification of colon biopsy samples by spatial analysis of a single spectral band from its hyperspectral cube

    Get PDF
    The histopathological analysis of colon biopsy samples is a very important part of screening for colorectal cancer. There is, however, significant inter-observer and even intra-observer variability in the results of such analysis due to its very subjective nature. Therefore, quantitative methods are required for the analysis of histopathological images to aid the histopatholgists in their diagnosis. In this paper, we exploit the shape and structure of the gland nuclei cells for the classification of colon biopsy samples using two-dimensional principal component analysis (2DPCA) and Support Vector Machine (SVM). We conclude that the use of textural features extracted from non-overlapping blocks of the histopathological images results in a non-linear decision boundary which can be efficiently exploited using a SVM with appropriate choice of parameters for its Gaussian kernel. The SVM classifier outperforms all the remaining methods by a clear margin

    Combined analytical approach empowers precise spectroscopic interpretation of subcellular components of pancreatic cancer cells

    Get PDF
    The lack of specific and sensitive early diagnostic options for pancreatic cancer (PC) results in patients being largely diagnosed with late-stage disease, thus inoperable and burdened with high mortality. Molecular spectroscopic methodologies, such as Raman or infrared spectroscopies, show promise in becoming a leader in screening for early-stage cancer diseases, including PC. However, should such technology be introduced, the identification of differentiating spectral features between various cancer types is required. This would not be possible without the precise extraction of spectra without the contamination by necrosis, inflammation, desmoplasia, or extracellular fluids such as mucous that surround tumor cells. Moreover, an efficient methodology for their interpretation has not been well defined. In this study, we compared different methods of spectral analysis to find the best for investigating the biomolecular composition of PC cells cytoplasm and nuclei separately. Sixteen PC tissue samples of main PC subtypes (ductal adenocarcinoma, intraductal papillary mucinous carcinoma, and ampulla of Vater carcinoma) were collected with Raman hyperspectral mapping, resulting in 191,355 Raman spectra and analyzed with comparative methodologies, specifically, hierarchical cluster analysis, non-negative matrix factorization, T-distributed stochastic neighbor embedding, principal components analysis (PCA), and convolutional neural networks (CNN). As a result, we propose an innovative approach to spectra classification by CNN, combined with PCA for molecular characterization. The CNN-based spectra classification achieved over 98% successful validation rate. Subsequent analyses of spectral features revealed differences among PC subtypes and between the cytoplasm and nuclei of their cells. Our study establishes an optimal methodology for cancer tissue spectral data classification and interpretation that allows precise and cognitive studies of cancer cells and their subcellular components, without mixing the results with cancer-surrounding tissue. As a proof of concept, we describe findings that add to the spectroscopic understanding of PC
    corecore