794 research outputs found

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Detecting dings and dents on specular car body surfaces based on optical flow

    Full text link
    [EN] This paper introduces a new approach to detect defects cataloged as dings and dents on car body surfaces, which is currently one of the most important issues facing quality control in the automotive industry. Using well-known optical flow algorithms and the deflectometry principle, the method proposed in this work is able to detect all kind of anomalies on specular surfaces. Hence, our method consists of two main steps: first, in the pre-processing step, light patterns projected on the body surface sweep uniformly the area of inspection, whilst a new image fusion law, based on optical flow, is used to obtain a resulting fused image holding the information of all variations suffered by the projected patterns during the sweeping process, indicating the presence of anomalies; second, a new post-processing step is proposed that avoids the need of using pre-computed reference backgrounds in order to differentiate defects from other body features such as style-lines. To that end, the image background of the resulting fused image is estimated in the first place through a method based on blurring the image according to the direction of each pixel. Afterwards, the estimated image background is used in a new subtraction law through which defects are well differentiated from other surface deformations, allowing the detection of defects in the entire illuminated area. In addition, since our approach, together with the system used, computes defects in less than 15 s, it satisfies the assembly plants time requirements. Experimental results presented in this paper are obtained from the industrial automatic quality control system QEyeTunnel employed in the production line at the Mercedes-Benz factory in Vitoria, Spain. A complete analysis of the algorithm performance will be shown here, together with several tests proving the robustness and reliability of our proposal.This work is supported by VALi+d (APOSTD/2016/044) and PROMETEO (PROMETEOII/2014/044) Programs, both from Conselleria d'Educacio, Generalitat Valenciana.Arnal-Benedicto, L.; Solanes Galbis, JE.; Molina, J.; Tornero Montserrat, J. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems. 45:306-321. https://doi.org/10.1016/j.jmsy.2017.07.006S3063214

    Robust signatures for 3D face registration and recognition

    Get PDF
    PhDBiometric authentication through face recognition has been an active area of research for the last few decades, motivated by its application-driven demand. The popularity of face recognition, compared to other biometric methods, is largely due to its minimum requirement of subject co-operation, relative ease of data capture and similarity to the natural way humans distinguish each other. 3D face recognition has recently received particular interest since three-dimensional face scans eliminate or reduce important limitations of 2D face images, such as illumination changes and pose variations. In fact, three-dimensional face scans are usually captured by scanners through the use of a constant structured-light source, making them invariant to environmental changes in illumination. Moreover, a single 3D scan also captures the entire face structure and allows for accurate pose normalisation. However, one of the biggest challenges that still remain in three-dimensional face scans is the sensitivity to large local deformations due to, for example, facial expressions. Due to the nature of the data, deformations bring about large changes in the 3D geometry of the scan. In addition to this, 3D scans are also characterised by noise and artefacts such as spikes and holes, which are uncommon with 2D images and requires a pre-processing stage that is speci c to the scanner used to capture the data. The aim of this thesis is to devise a face signature that is compact in size and overcomes the above mentioned limitations. We investigate the use of facial regions and landmarks towards a robust and compact face signature, and we study, implement and validate a region-based and a landmark-based face signature. Combinations of regions and landmarks are evaluated for their robustness to pose and expressions, while the matching scheme is evaluated for its robustness to noise and data artefacts

    Fixtureless geometric inspection of nonrigid parts using "generalized numerical inspection fixture"

    Get PDF
    Free-form nonrigid parts form the substance of today’s automotive and aerospace industries. These parts have different shapes in free state due to their dimensional and geometric variations, gravity and residual strains. For the geometric inspection of such compliant parts, special inspection fixtures, in combination with coordinate measuring systems (CMM) and/or optical data acquisition devices (scanners) are used. This inevitably causes additional costs and delays that result in a lack of competitiveness in the industry. The goal of this thesis is to facilitate the dimensional and geometrical inspection of flexible components from a point cloud without using a jig or secondary conformation operation. More specifically, we aim to develop a methodology to localize and quantify the profile defects in the case of thin shells which are typical to the aerospace and automotive industries. The presented methodology is based on the fact that the interpoint geodesic distance between any two points of a shape remains unchangeable during an isometric deformation. This study elaborates on the theory and general methods for the metrology of nonrigid parts. We have developed a Generalized Numerical Inspection Fixture (GNIF), a robust methodology which merges existing technologies in metric and computational geometry, nonlinear dimensionality reduction techniques, and finite element methods to introduce a general approach to the fixtureless geometrical inspection of nonrigid parts

    3D convolutional neural networks to estimate assembly process parameters using 3D point-clouds

    Get PDF
    Closed loop dimensional quality control for an assembly system entails controlling process parameters based on dimensional quality measurement data to ensure that products conform to quality requirements. Effective closed-loop quality control reduces machine downtime and increases productivity, as well as enables efficient predictive maintenance and continuous improvement of product quality. Accurate estimation of dimensional variations on the final part is a key requirement, in order to detect and correct process faults, for effective closed-loop quality control. Nowadays, this is often done by experienced process engineers, using a trial-and-error approach, which is time-consuming and can be unreliable. In this paper, a novel model to estimate process parameters error variations using high-density cloud-of-point measurement data captured by 3D optical scanners is proposed. The proposed model termed as PointDevNet uses 3D convolutional neural networks (CNN) that leverage the deviations of key nodes and their local neighbourhood to estimate the process parameter variations. These process parameters variation estimates are leveraged for root cause isolation as a necessary but currently missing step needed for the development of closed-loop quality control framework. The proposed model is compared with an existing state-of-the-art linear model under different scenarios such as a single and multiple root causes, and the presence of measurement noise. The state-of-the-art model is evaluated under different point selections and results are compared to the proposed model with consideration to an industrial case study involving a sheet metal part, i.e. window reinforcement panel

    Progress in industrial photogrammetry by means of markerless solutions

    Get PDF
    174 p.La siguiente tesis está enfocada al desarrollo y uso avanzado de metodologías fotogramétrica sin dianas en aplicaciones industriales. La fotogrametría es una técnica de medición óptica 3D que engloba múltiples configuraciones y aproximaciones. En este estudio se han desarrollado procedimientos de medición, modelos y estrategias de procesamiento de imagen que van más allá que la fotogrametría convencional y buscan el emplear soluciones de otros campos de la visión artificial en aplicaciones industriales. Mientras que la fotogrametría industrial requiere emplear dianas artificiales para definir los puntos o elementos de interés, esta tesis contempla la reducción e incluso la eliminación de las dianas tanto pasivas como activas como alternativas prácticas. La mayoría de los sistemas de medida utilizan las dianas tanto para definir los puntos de control, relacionar las distintas perspectivas, obtener precisión, así como para automatizar las medidas. Aunque en muchas situaciones el empleo de dianas no sea restrictivo existen aplicaciones industriales donde su empleo condiciona y restringe considerablemente los procedimientos de medida empleados en la inspección. Un claro ejemplo es la verificación y control de calidad de piezas seriadas, o la medición y seguimiento de elementos prismáticos relacionados con un sistema de referencia determinado. Es en este punto donde la fotogrametría sin dianas puede combinarse o complementarse con soluciones tradicionales para tratar de mejorar las prestaciones actuales

    Optical measurement of shape and deformation fields on challenging surfaces

    Get PDF
    A multiple-sensor optical shape measurement system (SMS) based on the principle of white-light fringe projection has been developed and commercialised by Loughborough University and Phase Vision Ltd for over 10 years. The use of the temporal phase unwrapping technique allows precise and dense shape measurements of complex surfaces; and the photogrammetry-based calibration technique offers the ability to calibrate multiple sensors simultaneously in order to achieve 360° measurement coverage. Nevertheless, to enhance the applicability of the SMS in industrial environments, further developments are needed (i) to improve the calibration speed for quicker deployment, (ii) to broaden the application range from shape measurement to deformation field measurement, and (iii) to tackle practically-challenging surfaces of which specular components may disrupt the acquired data and result in spurious measurements. The calibration process typically requires manual positioning of an artefact (i.e., reference object) at many locations within the view of the sensors. This is not only timeconsuming but also complicated for an operator with average knowledge of metrology. This thesis introduces an automated artefact positioning system which enables automatic and optimised distribution of the artefacts, automatic prediction of their whereabouts to increase the artefact detection speed and robustness, and thereby greater overall calibration performance. This thesis also describes a novel technique that integrates the digital image correlation (DIC) technique into the present fringe projection SMS for the purpose of simultaneous shape and deformation field measurement. This combined technique offers three key advantages: (a) the ability to deal with geometrical discontinuities which are commonly present on mechanical surfaces and currently challenging to most deformation measurement methods, (b) the ability to measure 3D displacement fields with a basic single-camera single-projector SMS with no additional hardware components, and (c) the simple implementation on a multiple-sensor hardware platform to achieve complete coverage of large-scale and complex samples, with the resulting displacement fields automatically lying in a single global coordinate system. A displacement measurement iii accuracy of ≅1/12,000 of the measurement volume, which is comparable to that of an industry-standard DIC system, has been achieved. The applications of this novel technique to several structural tests of aircraft wing panels on-site at the research centre of Airbus UK in Filton are also presented. Mechanical components with shiny surface finish and complex geometry may introduce another challenge to present fringe projection techniques. In certain circumstances, multiple reflections of the projected fringes on an object surface may cause ambiguity in the phase estimation process and result in incorrect coordinate measurements. This thesis presents a new technique which adopts a Fourier domain ranging (FDR) method to correctly identifying multiple phase signals and enables unambiguous triangulation for a measured coordinate. Experiments of the new FDR technique on various types of surfaces have shown promising results as compared to the traditional phase unwrapping techniques
    • …
    corecore