74 research outputs found

    Feature-combination hybrid recommender systems for automated music playlist continuation

    Get PDF
    Music recommender systems have become a key technology to support the interaction of users with the increasingly larger music catalogs of on-line music streaming services, on-line music shops, and personal devices. An important task in music recommender systems is the automated continuation of music playlists, that enables the recommendation of music streams adapting to given (possibly short) listening sessions. Previous works have shown that applying collaborative filtering to collections of curated music playlists reveals underlying playlist-song co-occurrence patterns that are useful to predict playlist continuations. However, most music collections exhibit a pronounced long-tailed distribution. The majority of songs occur only in few playlists and, as a consequence, they are poorly represented by collaborative filtering. We introduce two feature-combination hybrid recommender systems that extend collaborative filtering by integrating the collaborative information encoded in curated music playlists with any type of song feature vector representation. We conduct off-line experiments to assess the performance of the proposed systems to recover withheld playlist continuations, and we compare them to competitive pure and hybrid collaborative filtering baselines. The results of the experiments indicate that the introduced feature-combination hybrid recommender systems can more accurately predict fitting playlist continuations as a result of their improved representation of songs occurring in few playlists(VLID)328909

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    A Hybrid Approach to Music Playlist Continuation Based on Playlist-Song Membership

    Full text link
    Automated music playlist continuation is a common task of music recommender systems, that generally consists in providing a fitting extension to a given playlist. Collaborative filtering models, that extract abstract patterns from curated music playlists, tend to provide better playlist continuations than content-based approaches. However, pure collaborative filtering models have at least one of the following limitations: (1) they can only extend playlists profiled at training time; (2) they misrepresent songs that occur in very few playlists. We introduce a novel hybrid playlist continuation model based on what we name "playlist-song membership", that is, whether a given playlist and a given song fit together. The proposed model regards any playlist-song pair exclusively in terms of feature vectors. In light of this information, and after having been trained on a collection of labeled playlist-song pairs, the proposed model decides whether a playlist-song pair fits together or not. Experimental results on two datasets of curated music playlists show that the proposed playlist continuation model compares to a state-of-the-art collaborative filtering model in the ideal situation of extending playlists profiled at training time and where songs occurred frequently in training playlists. In contrast to the collaborative filtering model, and as a result of its general understanding of the playlist-song pairs in terms of feature vectors, the proposed model is additionally able to (1) extend non-profiled playlists and (2) recommend songs that occurred seldom or never in training~playlists

    A hybrid recommender system for improving automatic playlist continuation

    Get PDF
    Although widely used, the majority of current music recommender systems still focus on recommendations’ accuracy, userpreferences and isolated item characteristics, without evaluating other important factors, like the joint item selections and the recommendation moment. However, when it comes to playlist recommendations, additional dimensions, as well as the notion of user experience and perception, should be taken into account to improve recommendations’ quality. In this work, HybA, a hybrid recommender system for automatic playlist continuation, that combines Latent Dirichlet Allocation and Case-Based Reasoning, is proposed. This system aims to address “similar concepts” rather than similar users. More than generating a playlist based on user requirements, like automatic playlist generation methods, HybA identifies the semantic characteristics of a started playlist and reuses the most similar past ones, to recommend relevant playlist continuations. In addition, support to beyond accuracy dimensions, like increased coherence or diverse items’ discovery, is provided. To overcome the semantic gap between music descriptions and user preferences, identify playlist structures and capture songs’ similarity, a graph model is used. Experiments on real datasets have shown that the proposed algorithm is able to outperform other state of the art techniques, in terms of accuracy, while balancing between diversity and coherence.This work has been partially supported by the Catalan Agency for Management of University and Research Grants (AGAUR) (2017 SGR 574), by the European Regional Development Fund (ERDF), through the Incentive System to Research and Technological development, within the Portugal2020 Competitiveness and Internationalization Operational Program –COMPETE 2020– (POCI-01-0145-FEDER006961), and by the Portuguese Foundation for Science and Technology (FCT) (UID/EEA/50014/2013).Peer ReviewedPostprint (author's final draft

    Music recommender systems. Proof of concept

    Get PDF
    Data overload is a well-known problem due to the availability of big on-line distributed databases. While providing a wealth of information the difficulties to find the sought data and the necessary time spent in the search call for technological solutions. Classical search engines alleviate this problem and at the same time have transformed the way people access to the information they are interested in. On the other hand, Internet also has changed the music consuming habits around the world. It is possible to find almost every recorded song or music piece. Over the last years music streaming platforms like Spotify, Apple Music or Amazon Music have contributed to a substantial change of users’ listening habits and the way music is commercialized and distributed. On-demand music platforms offer their users a huge catalogue so they can do a quick search and listen what they want or build up their personal library. In this context Music Recommender Systems may help users to discover music that match their tastes. Therefore music recommender systems are a powerful tool to make the most of an immense catalogue, impossible to be fully known by a human. This project aims at testing different music recommendation approaches applied to the particular case of users playlists. Several recommender alternatives were designed and evaluated: collaborative filtering systems, content-based systems and hybrid recommender systems that combine both techniques. Two systems are proposed. One system is content-based and uses correlation between tracks characterized by high-level descriptors and the other is an hybrid recommender that first apply a collaborative method to filter the database and then computes the final recommendation using Gaussian Mixture Models. Recommendations were evaluated using objective metrics and human evaluations, obtaining positive results.Ingeniería de Sistemas Audiovisuale

    A hybrid approach for item collection recommendations : an application to automatic playlist continuation

    Get PDF
    Current recommender systems aim mainly to generate accurate item recommendations, without properly evaluating the multiple dimensions of the recommendation problem. However, in many domains, like in music, where items are rarely consumed in isolation, users would rather need a set of items, designed to work well together, while having some cognitive properties as a whole, related to their perception of quality and satisfaction. In this thesis, a hybrid case-based recommendation approach for item collections is proposed. In particular, an application to automatic playlist continuation, addressing similar cognitive concepts, rather than similar users, is presented. Playlists, that are sets of music items designed to be consumed as a sequence, with a specific purpose and within a specific context, are treated as cases. The proposed recommender system is based on a meta-level hybridization. First, Latent Dirichlet Allocation is applied to the set of past playlists, described as distributions over music styles, to identify their underlying concepts. Then, for a started playlist, its semantic characteristics, like its latent concept and the styles of the included items, are inferred, and Case-Based Reasoning is applied to the set of past playlists addressing the same concept, to construct and recommend a relevant playlist continuation. A graph-based item model is used to overcome the semantic gap between songs’ signal-based descriptions and users’ high-level preferences, efficiently capture the playlists’ structures and the similarity of the music items in those. As the proposed method bases its reasoning on previous playlists, it does not require the construction of complex user profiles to generate accurate recommendations. Furthermore, apart from relevance, support to parameters beyond accuracy, like increased coherence or support to diverse items is provided to deliver a more complete user experience. Experiments on real music datasets have revealed improved results, compared to other state of the art techniques, while achieving a “good trade-off” between recommendations’ relevance, diversity and coherence. Finally, although actually focusing on playlist continuations, the designed approach could be easily adapted to serve other recommendation domains with similar characteristics.Los sistemas de recomendación actuales tienen como objetivo principal generar recomendaciones precisas de artículos, sin evaluar propiamente las múltiples dimensiones del problema de recomendación. Sin embargo, en dominios como la música, donde los artículos rara vez se consumen en forma aislada, los usuarios más bien necesitarían recibir recomendaciones de conjuntos de elementos, diseñados para que se complementaran bien juntos, mientras se cubran algunas propiedades cognitivas, relacionadas con su percepción de calidad y satisfacción. En esta tesis, se propone un sistema híbrido de recomendación meta-nivel, que genera recomendaciones de colecciones de artículos. En particular, el sistema se centra en la generación automática de continuaciones de listas de música, tratando conceptos cognitivos similares, en lugar de usuarios similares. Las listas de reproducción son conjuntos de elementos musicales diseñados para ser consumidos en secuencia, con un propósito específico y dentro de un contexto específico. El sistema propuesto primero aplica el método de Latent Dirichlet Allocation a las listas de reproducción, que se describen como distribuciones sobre estilos musicales, para identificar sus conceptos. Cuando se ha iniciado una nueva lista, se deducen sus características semánticas, como su concepto y los estilos de los elementos incluidos en ella. A continuación, el sistema aplica razonamiento basado en casos, utilizando las listas del mismo concepto, para construir y recomendar una continuación relevante. Se utiliza un grafo que modeliza las relaciones de los elementos, para superar el ?salto semántico? existente entre las descripciones de las canciones, normalmente basadas en características sonoras, y las preferencias de los usuarios, expresadas en características de alto nivel. También se utiliza para calcular la similitud de los elementos musicales y para capturar la estructura de las listas de dichos elementos. Como el método propuesto basa su razonamiento en las listas de reproducción y no en usuarios que las construyeron, no se requiere la construcción de perfiles de usuarios complejos para poder generar recomendaciones precisas. Aparte de la relevancia de las recomendaciones, el sistema tiene en cuenta parámetros más allá de la precisión, como mayor coherencia o soporte a la diversidad de los elementos para enriquecer la experiencia del usuario. Los experimentos realizados en bases de datos reales, han revelado mejores resultados, en comparación con las técnicas utilizadas normalmente. Al mismo tiempo, el algoritmo propuesto logra un "buen equilibrio" entre la relevancia, la diversidad y la coherencia de las recomendaciones generadas. Finalmente, aunque la metodología presentada se centra en la recomendación de continuaciones de listas de reproducción musical, el sistema se puede adaptar fácilmente a otros dominios con características similares.Postprint (published version

    A collaborative filtering method for music recommendation

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsThe present dissertation focuses on proposing and describing a collaborative filtering approach for Music Recommender Systems. Music Recommender Systems, which are part of a broader class of Recommender Systems, refer to the task of automatically filtering data to predict the songs that are more likely to match a particular profile. So far, academic researchers have proposed a variety of machine learning approaches for determining which tracks to recommend to users. The most sophisticated among them consist, often, on complex learning techniques which can also require considerable computational resources. However, recent research studies proved that more simplistic approaches based on nearest neighbors could lead to good results, often at much lower computational costs, representing a viable alternative solution to the Music Recommender System problem. Throughout this thesis, we conduct offline experiments on a freely-available collection of listening histories from real users, each one containing several different music tracks. We extract a subset of 10 000 songs to assess the performance of the proposed system, comparing it with a Popularity-based model approach. Furthermore, we provide a conceptual overview of the recommendation problem, describing the state-of-the-art methods, and presenting its current challenges. Finally, the last section is dedicated to summarizing the essential conclusions and presenting possible future improvements
    corecore