145 research outputs found

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir täglich verwenden, übernommen. Es bringt mehrere inhärente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der Bitübertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher Mobilität stark beeinträchtigt. In dieser Arbeit untersuchen wir die Auswirkungen der Mobilität auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschätzen und seine Auswirkungen am Empfänger zu kompensieren. Auf Compressed Sensing (CS) basierende Kanalschätzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal präzise, robust und rechnerisch effizient abzuschätzen. Darüber hinaus wird ein Cognitive Framework entwickelt und getestet, das die Mobilität im Kanal erkennt und ein optimales Schätzungsschema konfiguriert. Das Cognitive Framework gewährleistet ein rechnerisch optimales Kanalschätzungsschema für alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung für drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgeführt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher Mobilität in OFDM-basierten drahtlosen Kommunikationssystemen

    Random observations on random observations: Sparse signal acquisition and processing

    Get PDF
    In recent years, signal processing has come under mounting pressure to accommodate the increasingly high-dimensional raw data generated by modern sensing systems. Despite extraordinary advances in computational power, processing the signals produced in application areas such as imaging, video, remote surveillance, spectroscopy, and genomic data analysis continues to pose a tremendous challenge. Fortunately, in many cases these high-dimensional signals contain relatively little information compared to their ambient dimensionality. For example, signals can often be well-approximated as a sparse linear combination of elements from a known basis or dictionary. Traditionally, sparse models have been exploited only after acquisition, typically for tasks such as compression. Recently, however, the applications of sparsity have greatly expanded with the emergence of compressive sensing, a new approach to data acquisition that directly exploits sparsity in order to acquire analog signals more efficiently via a small set of more general, often randomized, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquist-rate samples. A common theme in this research is the use of randomness in signal acquisition, inspiring the design of hardware systems that directly implement random measurement protocols. This thesis builds on the field of compressive sensing and illustrates how sparsity can be exploited to design efficient signal processing algorithms at all stages of the information processing pipeline, with a particular focus on the manner in which randomness can be exploited to design new kinds of acquisition systems for sparse signals. Our key contributions include: (i) exploration and analysis of the appropriate properties for a sparse signal acquisition system; (ii) insight into the useful properties of random measurement schemes; (iii) analysis of an important family of algorithms for recovering sparse signals from random measurements; (iv) exploration of the impact of noise, both structured and unstructured, in the context of random measurements; and (v) algorithms that process random measurements to directly extract higher-level information or solve inference problems without resorting to full-scale signal recovery, reducing both the cost of signal acquisition and the complexity of the post-acquisition processing

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Structured Compressed Sensing Using Deterministic Sequences

    No full text
    The problem of estimating sparse signals based on incomplete set of noiseless or noisy measurements has been investigated for a long time from different perspec- tives. In this dissertation, after the review of the theory of compressed sensing (CS) and existing structured sensing matrices, a new class of convolutional sensing matri- ces based on deterministic sequences are developed in the first part. The proposed matrices can achieve a near optimal bound with O(K log(N)) measurements for non-uniform recovery. Not only are they able to approximate compressible signals in the time domain, but they can also recover sparse signals in the frequency and discrete cosine transform domain. The candidates of the deterministic sequences include maximum length sequence (or called m-sequence), Golay's complementary sequence and Legendre sequence etc., which will be investigated respectively. In the second part, Golay-paired Hadamard matrices are introduced as structured sensing matrices, which are constructed from the Hadamard matrix, followed by diagonal Golay sequences. The properties and performances are analyzed in the following. Their strong structures ensure special isometry properties, and make them be easier applicable to hardware potentially. Finally, we exploit novel CS principles successfully in a few real applications, including radar imaging and dis- tributed source coding. The performance and the effectiveness of each scenario are verified in both theory and simulations

    Advanced RFI detection, RFI excision, and spectrum sensing : algorithms and performance analyses

    Get PDF
    Because of intentional and unintentional man-made interference, radio frequency interference (RFI) is causing performance loss in various radio frequency operating systems such as microwave radiometry, radio astronomy, satellite communications, ultra-wideband communications, radar, and cognitive radio. To overcome the impact of RFI, a robust RFI detection coupled with an efficient RFI excision are, thus, needed. Amongst their limitations, the existing techniques tend to be computationally complex and render inefficient RFI excision. On the other hand, the state-of-the-art on cognitive radio (CR) encompasses numerous spectrum sensing techniques. However, most of the existing techniques either rely on the availability of the channel state information (CSI) or the primary signal characteristics. Motivated by the highlighted limitations, this Ph.D. dissertation presents research investigations and results grouped into three themes: advanced RFI detection, advanced RFI excision, and advanced spectrum sensing. Regarding advanced RFI detection, this dissertation presents five RFI detectors: a power detector (PD), an energy detector (ED), an eigenvalue detector (EvD), a matrix-based detector, and a tensor-based detector. First, a computationally simple PD is investigated to detect a brodband RFI. By assuming Nakagami-m fading channels, exact closed-form expressions for the probabilities of RFI detection and of false alarm are derived and validated via simulations. Simulations also demonstrate that PD outperforms kurtosis detector (KD). Second, an ED is investigated for RFI detection in wireless communication systems. Its average probability of RFI detection is studied and approximated, and asymptotic closed-form expressions are derived. Besides, an exact closed-form expression for its average probability of false alarm is derived. Monte-Carlo simulations validate the derived analytical expressions and corroborate that the investigated ED outperforms KD and a generalized likelihood ratio test (GLRT) detector. The performance of ED is also assessed using real-world RFI contaminated data. Third, a blind EvD is proposed for single-input multiple-output (SIMO) systems that may suffer from RFI. To characterize the performance of EvD, performance closed-form expressions valid for infinitely huge samples are derived and validated through simulations. Simulations also corroborate that EvD manifests, even under sample starved settings, a comparable detection performance with a GLRT detector fed with the knowledge of the signal of interest (SOI) channel and a matched subspace detector fed with the SOI and RFI channels. At last, for a robust detection of RFI received through a multi-path fading channel, this dissertation presents matrix-based and tensor-based multi-antenna RFI detectors while introducing a tensor-based hypothesis testing framework. To characterize the performance of these detectors, performance analyses have been pursued. Simulations assess the performance of the proposed detectors and validate the derived asymptotic characterizations. Concerning advanced RFI excision, this dissertation introduces a multi-linear algebra framework to the multi-interferer RFI (MI-RFI) excision research by proposing a multi-linear subspace estimation and projection (MLSEP) algorithm for SIMO systems. Having employed smoothed observation windows, a smoothed MLSEP (s-MLSEP) algorithm is also proposed. MLSEP and s-MLSEP require the knowledge of the number of interferers and their respective channel order. Accordingly, a novel smoothed matrix-based joint number of interferers and channel order enumerator is proposed. Performance analyses corroborate that both MLSEP and s-MLSEP can excise all interferers when the perturbations get infinitesimally small. For such perturbations, the analyses also attest that s-MLSEP exhibits a faster convergence to a zero excision error than MLSEP which, in turn, converges faster than a subspace projection algorithm. Despite its slight complexity, simulations and performance assessment on real-world data demonstrate that MLSEP outperforms projection-based RFI excision algorithms. Simulations also corroborate that s-MLSEP outperforms MLSEP as the smoothing factor gets smaller. With regard to advanced spectrum sensing, having been inspired by an F–test detector with a simple analytical false alarm threshold expression considered an alternative to the existing blind detectors, this dissertation presents and evaluates simple F–test based spectrum sensing techniques that do not require the knowledge of CSI for multi-antenna CRs. Exact and asymptotic analytical performance closed-form expressions are derived for the presented detectors. Simulations assess the performance of the presented detectors and validate the derived expressions. For an additive noise exhibiting the same variance across multiple-antenna frontends, simulations also corroborate that the presented detectors are constant false alarm rate detectors which are also robust against noise uncertainty

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required
    • …
    corecore