4,216 research outputs found

    Practical classification of different moving targets using automotive radar and deep neural networks

    Get PDF
    In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed

    Personnel recognition and gait classification based on multistatic micro-doppler signatures using deep convolutional neural networks

    Get PDF
    In this letter, we propose two methods for personnel recognition and gait classification using deep convolutional neural networks (DCNNs) based on multistatic radar micro-Doppler signatures. Previous DCNN-based schemes have mainly focused on monostatic scenarios, whereas directional diversity offered by multistatic radar is exploited in this letter to improve classification accuracy. We first propose the voted monostatic DCNN (VMo-DCNN) method, which trains DCNNs on each receiver node separately and fuses the results by binary voting. By merging the fusion step into the network architecture, we further propose the multistatic DCNN (Mul-DCNN) method, which performs slightly better than VMo-DCNN. These methods are validated on real data measured with a 2.4-GHz multistatic radar system. Experimental results show that the Mul-DCNN achieves over 99% accuracy in armed/unarmed gait classification using only 20% training data and similar performance in two-class personnel recognition using 50% training data, which are higher than the accuracy obtained by performing DCNN on a single radar node

    Threshold Determination for ARTMAP-FD Familiarity Discrimination

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). ARTMAP-FD quantifies the familiarity of a test pattern by computing a measure of the degree to which the pattern's components lie within the ranges of values of training patterns grouped in the same cluster. This familiarity measure is compared to a threshold which can be varied to generate a receiver operating characteristic (ROC) curve. Methods for selecting optimal values for the threshold are evaluated. The performance of validation-set methods is compared with that of methods which track the development of the network's discrimination capability during training. The techniques are applied to databases of simulated radar range profiles.Advanced Research Projects Agency; Office of Naval Research (N00011-95-1-0657, N00011-95-0109, NOOOB-96-0659); National Science Foundation (IRI-94-01659

    Micro-Doppler Based Human-Robot Classification Using Ensemble and Deep Learning Approaches

    Full text link
    Radar sensors can be used for analyzing the induced frequency shifts due to micro-motions in both range and velocity dimensions identified as micro-Doppler (μ\boldsymbol{\mu}-D) and micro-Range (μ\boldsymbol{\mu}-R), respectively. Different moving targets will have unique μ\boldsymbol{\mu}-D and μ\boldsymbol{\mu}-R signatures that can be used for target classification. Such classification can be used in numerous fields, such as gait recognition, safety and surveillance. In this paper, a 25 GHz FMCW Single-Input Single-Output (SISO) radar is used in industrial safety for real-time human-robot identification. Due to the real-time constraint, joint Range-Doppler (R-D) maps are directly analyzed for our classification problem. Furthermore, a comparison between the conventional classical learning approaches with handcrafted extracted features, ensemble classifiers and deep learning approaches is presented. For ensemble classifiers, restructured range and velocity profiles are passed directly to ensemble trees, such as gradient boosting and random forest without feature extraction. Finally, a Deep Convolutional Neural Network (DCNN) is used and raw R-D images are directly fed into the constructed network. DCNN shows a superior performance of 99\% accuracy in identifying humans from robots on a single R-D map.Comment: 6 pages, accepted in IEEE Radar Conference 201

    Neural network directed Bayes decision rule for moving target classification

    Get PDF
    Includes bibliographical references.In this paper, a new neural network directed Bayes decision rule is developed for target classification exploiting the dynamic behavior of the target. The system consists of a feature extractor, a neural network directed conditional probability generator and a novel sequential Bayes classifier. The velocity and curvature sequences extracted from each track are used as the primary features. Similar to hidden Markov model (HMM) scheme, several hidden states are used to train the neural network, the output of which is the conditional probability of occurring the hidden states given the observations. These conditional probabilities are then used as the inputs to the sequential Bayes classifier to make the classification. The classification results are updated recursively whenever a new scan of data is received. Simulation results on multiscan images containing heavy clutter are presented to demonstrate the effectiveness of the proposed methods.This work was funded by the Optoelectronic Computing Systems (OCS) Center at Colorado State University, under NSF/REC Grant 9485502

    Ground Radar Target Classification Using Singular Value Decomposition and Multilayer Perceptron

    Get PDF
    The paper deals with classification of ground radar targets. A received radar signal backscattered from a ground radar target was digitized and in the form of radar signal matrix utilized for a feature extraction based on Singular Value Decomposition. Furthermore, singular values of a backscattered radar signal matrix, as a target feature, were utilized for Radar Target Classification by multilayer perceptron. In the learning phase of a multilayer perceptron we used the learning target set and in the testing phase the testing target set was used. The learning and testing target sets were created on the basis of real ground radar targets

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Artificial Neural Network Approach in Radar Target Classification

    Get PDF
    corecore