1,911 research outputs found

    Feature-based annealing particle filter for robust body pose estimation

    Get PDF
    This paper presents a new annealing method for particle filtering in the context of body pose estimation. The feature-based annealing is inferred from the weighting functions obtained with common image features used for the likelihood approximation. We introduce a complementary weighting function based on the foreground extraction and we balance the different measures through the annealing layers in order to improve the posterior estimate. This technique is applied to estimate the upper body pose of a subject in a realistic multi-view environment. Comparative results between the proposed method and the common annealing strategy are presented to assess the robustness of the algorithm.Postprint (published version

    Human activity tracking from moving camera stereo data

    Get PDF
    We present a method for tracking human activity using observations from a moving narrow-baseline stereo camera. Range data are computed from the disparity between stereo image pairs. We propose a novel technique for calculating weighting scores from range data given body configuration hypotheses. We use a modified Annealed Particle Filter to recover the optimal tracking candidate from a low dimensional latent space computed from motion capture data and constrained by an activity model. We evaluate the method on synthetic data and on a walking sequence recorded using a moving hand-held stereo camera

    Backing off: hierarchical decomposition of activity for 3D novel pose recovery

    Get PDF
    For model-based 3D human pose estimation, even simple models of the human body lead to high-dimensional state spaces. Where the class of activity is known a priori, low-dimensional activity models learned from training data make possible a thorough and efficient search for the best pose. Conversely, searching for solutions in the full state space places no restriction on the class of motion to be recovered, but is both difficult and expensive. This paper explores a potential middle ground between these approaches, using the hierarchical Gaussian process latent variable model to learn activity at different hierarchical scales within the human skeleton. We show that by training on full-body activity data then descending through the hierarchy in stages and exploring subtrees independently of one another, novel poses may be recovered. Experimental results on motion capture data and monocular video sequences demonstrate the utility of the approach, and comparisons are drawn with existing low-dimensional activity models. © 2009. The copyright of this document resides with its authors

    Backing off: hierarchical decomposition of activity for 3D novel pose recovery

    Get PDF
    For model-based 3D human pose estimation, even simple models of the human body lead to high-dimensional state spaces. Where the class of activity is known a priori, low-dimensional activity models learned from training data make possible a thorough and efficient search for the best pose. Conversely, searching for solutions in the full state space places no restriction on the class of motion to be recovered, but is both difficult and expensive. This paper explores a potential middle ground between these approaches, using the hierarchical Gaussian process latent variable model to learn activity at different hierarchical scales within the human skeleton. We show that by training on full-body activity data then descending through the hierarchy in stages and exploring subtrees independently of one another, novel poses may be recovered. Experimental results on motion capture data and monocular video sequences demonstrate the utility of the approach, and comparisons are drawn with existing low-dimensional activity models. © 2009. The copyright of this document resides with its authors

    Feature-based annealing particle filter for robust motion capture

    Get PDF
    This thesis presents a new annealing method for particle filtering aiming at body pose estimation. Particle filters are Monte Carlo methods commonly employed in non-linear and non-Gaussian Bayesian problems, such as the estimation of human dynamics. However, they are ine±cient in high-dimensional state spaces. Annealed particle filter copes with such spaces by introducing a layered stochastic search. Our algorithm aims at generalizing and enhancing the classical annealed particle filter. Diferent image features are exploited in a sequential importance sampling scheme to build better proposal distributions from likelihood. This technique, termed Feature-Based Annealing, is inferred from the required function properties in the annealing process and the properties of the weighting functions obtained with common image features in the field of body tracking. Comparative results between the proposed strategy and common annealed particle filter are shown to assess the robustness of the algorithm

    Articulated human tracking and behavioural analysis in video sequences

    Get PDF
    Recently, there has been a dramatic growth of interest in the observation and tracking of human subjects through video sequences. Arguably, the principal impetus has come from the perceived demand for technological surveillance, however applications in entertainment, intelligent domiciles and medicine are also increasing. This thesis examines human articulated tracking and the classi cation of human movement, rst separately and then as a sequential process. First, this thesis considers the development and training of a 3D model of human body structure and dynamics. To process video sequences, an observation model is also designed with a multi-component likelihood based on edge, silhouette and colour. This is de ned on the articulated limbs, and visible from a single or multiple cameras, each of which may be calibrated from that sequence. Second, for behavioural analysis, we develop a methodology in which actions and activities are described by semantic labels generated from a Movement Cluster Model (MCM). Third, a Hierarchical Partitioned Particle Filter (HPPF) was developed for human tracking that allows multi-level parameter search consistent with the body structure. This tracker relies on the articulated motion prediction provided by the MCM at pose or limb level. Fourth, tracking and movement analysis are integrated to generate a probabilistic activity description with action labels. The implemented algorithms for tracking and behavioural analysis are tested extensively and independently against ground truth on human tracking and surveillance datasets. Dynamic models are shown to predict and generate synthetic motion, while MCM recovers both periodic and non-periodic activities, de ned either on the whole body or at the limb level. Tracking results are comparable with the state of the art, however the integrated behaviour analysis adds to the value of the approach.Overseas Research Students Awards Scheme (ORSAS

    Managing performance vs. accuracy trade-offs with loop perforation

    Get PDF
    Many modern computations (such as video and audio encoders, Monte Carlo simulations, and machine learning algorithms) are designed to trade off accuracy in return for increased performance. To date, such computations typically use ad-hoc, domain-specific techniques developed specifically for the computation at hand. Loop perforation provides a general technique to trade accuracy for performance by transforming loops to execute a subset of their iterations. A criticality testing phase filters out critical loops (whose perforation produces unacceptable behavior) to identify tunable loops (whose perforation produces more efficient and still acceptably accurate computations). A perforation space exploration algorithm perforates combinations of tunable loops to find Pareto-optimal perforation policies. Our results indicate that, for a range of applications, this approach typically delivers performance increases of over a factor of two (and up to a factor of seven) while changing the result that the application produces by less than 10%
    corecore