392 research outputs found

    A topological comparison of surface extraction algorithms

    Get PDF
    In many application areas, it is useful to convert the discrete information stored in the nodes of a regular grid into a continuous boundary model. Isosurface extraction algorithms di er on how the discrete information in the grid is generated, on what information does the grid store and on the properties of the output surface.Preprin

    A topological comparison of surface extraction algorithms

    Get PDF
    In many application areas, it is useful to convert the discrete information stored in the nodes of a regular grid into a continuous boundary model. Isosurface extraction algorithms differ on how the discrete information in the grid is generated, on what information does the grid store and on the properties of the output surface. Recent algorithms offer different solutions for the disambiguation problem and for controlling the final topology. Based on a number of properties of the grid’s grey cells and of the reconstruction algorithms, a characterization of several surface extraction strategies is proposed. The classification presented shows the inherent limitations of the different algorithms concerning global topology control and reconstruction of local features like thin portions of the volume and almost non-manifold regions. These limitations can be observed and are illustrated with some practical examples. We review in light of this classification some of the relevant papers in the literature, and see that they cluster in some areas of the proposed hierarchy, making a case for where it might be more interesting to focus in future research.Preprin

    Local implicit modeling of blood vessels for interactive simulation

    Get PDF
    International audienceIn the context of computer-based simulation, contact management requires an accurate, smooth, but still efficient surface model for the blood vessels. A new implicit model is proposed, consisting of a tree of local implicit surfaces generated by skeletons ({\em blobby models}). The surface is reconstructed from data points by minimizing an energy, alternating with an original blob selection and subdivision scheme. The reconstructed models are very efficient for simulation and were shown to provide a sub-voxel approximation of the vessel surface on 5 patients

    Solid modelling for manufacturing: from Voelcker's boundary evaluation to discrete paradigms

    Get PDF
    Herb Voelcker and his research team laid the foundations of Solid Modelling, on which Computer-Aided Design is based. He founded the ambitious Production Automation Project, that included Constructive Solid Geometry (CSG) as the basic 3D geometric representation. CSG trees were compact and robust, saving a memory space that was scarce in those times. But the main computational problem was Boundary Evaluation: the process of converting CSG trees to Boundary Representations (BReps) with explicit faces, edges and vertices for manufacturing and visualization purposes. This paper presents some glimpses of the history and evolution of some ideas that started with Herb Voelcker. We briefly describe the path from “localization and boundary evaluation” to “localization and printing”, with many intermediate steps driven by hardware, software and new mathematical tools: voxel and volume representations, triangle meshes, and many others, observing also that in some applications, voxel models no longer require Boundary Evaluation. In this last case, we consider the current research challenges and discuss several avenues for further research.Project TIN2017-88515-C2-1-R funded by MCIN/AEI/10.13039/501100011033/FEDER‘‘A way to make Europe’’Peer ReviewedPostprint (published version

    Topology verification for isosurface extraction

    Get PDF
    Journal ArticleThe broad goals of verifiable visualization rely on correct algorithmic implementations. We extend a framework for verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital topology to design algorithms which verify topological invariants. Our extended framework reveals unexpected behavior and coding mistakes in popular publicly available isosurface codes

    Doctor of Philosophy

    Get PDF
    dissertationIn this dissertation, we advance the theory and practice of verifying visualization algorithms. We present techniques to assess visualization correctness through testing of important mathematical properties. Where applicable, these techniques allow us to distinguish whether anomalies in visualization features can be attributed to the underlying physical process or to artifacts from the implementation under verification. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. The contributions of this dissertation are manifold. We derive the mathematical framework for the expected behavior of several visualization algorithms, and compare them to experimentally observed results in the selected codes. In the Computational Science & Engineering community CS&E, this technique is know as the Method of Manufactured Solution (MMS). We apply MMS to the verification of geometrical and topological properties of isosurface extraction algorithms, and direct volume rendering. We derive the convergence of geometrical properties of isosurface extraction techniques, such as function value and normals. For the verification of topological properties, we use stratified Morse theory and digital topology to design algorithms that verify topological invariants. In the case of volume rendering algorithms, we provide the expected discretization errors for three different error sources. The results of applying the MMS is another important contribution of this dissertation. We report unexpected behavior for almost all implementations tested. In some cases, we were able to find and fix bugs that prevented the correctness of the visualization algorithm. In particular, we address an almost 2 0 -year-old bug with the core disambiguation procedure of Marching Cubes 33, one of the first algorithms intended to preserve the topology of the trilinear interpolant. Finally, an important by-product of this work is a range of responses practitioners can expect to encounter with the visualization technique under verification

    Warping cubes: better triangles from marching cubes

    Get PDF
    National Science Foundatio

    On Volumetric Shape Reconstruction from Implicit Forms

    Get PDF
    International audienceIn this paper we report on the evaluation of volumetric shape reconstruction methods that consider as input implicit forms in 3D. Many visual applications build implicit representations of shapes that are converted into explicit shape representations using geometric tools such as the Marching Cubes algorithm. This is the case with image based reconstructions that produce point clouds from which implicit functions are computed, with for instance a Poisson reconstruction approach. While the Marching Cubes method is a versatile solution with proven efficiency, alternative solutions exist with different and complementary properties that are of interest for shape modeling. In this paper, we propose a novel strategy that builds on Centroidal Voronoi Tessellations (CVTs). These tessellations provide volumetric and surface representations with strong regularities in addition to provably more accurate approximations of the implicit forms considered. In order to compare the existing strategies, we present an extensive evaluation that analyzes various properties of the main strategies for implicit to explicit volumetric conversions: Marching cubes, Delaunay refinement and CVTs, including accuracy and shape quality of the resulting shape mesh
    corecore