94,745 research outputs found

    Feature-Based Textures

    Get PDF
    This paper introduces feature-based textures, a new image representation that combines features and texture samples for high-quality texture mapping. Features identify boundaries within a texture where samples change discontinuously. They can be extracted from vector graphics representations, or explicity added to raster images to improve sharpness. Texture lookups are then interpolated from samples while respecting these boundaries. We present results from a software implementation of this technique demonstrating quality, efficiency and low memory overhead

    Classification of ordered texture images using regression modelling and granulometric features

    Get PDF
    Structural information available from the granulometry of an image has been used widely in image texture analysis and classification. In this paper we present a method for classifying texture images which follow an intrinsic ordering of textures, using polynomial regression to express granulometric moments as a function of class label. Separate models are built for each individual moment and combined for back-prediction of the class label of a new image. The methodology was developed on synthetic images of evolving textures and tested using real images of 8 different grades of cut-tear-curl black tea leaves. For comparison, grey level co-occurrence (GLCM) based features were also computed, and both feature types were used in a range of classifiers including the regression approach. Experimental results demonstrate the superiority of the granulometric moments over GLCM-based features for classifying these tea images

    Selective Control of Surface Spin Current in Topological Materials based on Pyrite-type OsX2 (X = Se, Te) Crystals

    Full text link
    Topological materials host robust surface states, which could form the basis for future electronic devices. As such states have spins that are locked to the momentum, they are of particular interest for spintronic applications. Understanding spin textures of the surface states of topologically nontrivial materials, and being able to manipulate their polarization, is therefore essential if they are to be utilized in future technologies. Here we use first-principles calculations to show that pyrite-type crystals OsX2 (X= Se, Te) are a class of topological material that can host surface states with spin polarization that can be either in-plane or out-of-plane. We show that the formation of low-energy states with symmetry-protected energy- and direction-dependent spin textures on the (001) surface of these materials is a consequence of a transformation from a topologically trivial to nontrivial state, induced by spin orbit interactions. The unconventional spin textures of these surface states feature an in-plane to out-of-plane spin polarization transition in the momentum space protected by local symmetries. Moreover, the surface spin direction and magnitude can be selectively filtered in specific energy ranges. Our demonstration of a new class of topological material with controllable spin textures provide a platform for experimentalists to detect and exploit unconventional surface spin textures in future spin-based nanoelectronic devices

    A survey of exemplar-based texture synthesis

    Full text link
    Exemplar-based texture synthesis is the process of generating, from an input sample, new texture images of arbitrary size and which are perceptually equivalent to the sample. The two main approaches are statistics-based methods and patch re-arrangement methods. In the first class, a texture is characterized by a statistical signature; then, a random sampling conditioned to this signature produces genuinely different texture images. The second class boils down to a clever "copy-paste" procedure, which stitches together large regions of the sample. Hybrid methods try to combine ideas from both approaches to avoid their hurdles. The recent approaches using convolutional neural networks fit to this classification, some being statistical and others performing patch re-arrangement in the feature space. They produce impressive synthesis on various kinds of textures. Nevertheless, we found that most real textures are organized at multiple scales, with global structures revealed at coarse scales and highly varying details at finer ones. Thus, when confronted with large natural images of textures the results of state-of-the-art methods degrade rapidly, and the problem of modeling them remains wide open.Comment: v2: Added comments and typos fixes. New section added to describe FRAME. New method presented: CNNMR

    A Novel Active Contour Model for Texture Segmentation

    Full text link
    Texture is intuitively defined as a repeated arrangement of a basic pattern or object in an image. There is no mathematical definition of a texture though. The human visual system is able to identify and segment different textures in a given image. Automating this task for a computer is far from trivial. There are three major components of any texture segmentation algorithm: (a) The features used to represent a texture, (b) the metric induced on this representation space and (c) the clustering algorithm that runs over these features in order to segment a given image into different textures. In this paper, we propose an active contour based novel unsupervised algorithm for texture segmentation. We use intensity covariance matrices of regions as the defining feature of textures and find regions that have the most inter-region dissimilar covariance matrices using active contours. Since covariance matrices are symmetric positive definite, we use geodesic distance defined on the manifold of symmetric positive definite matrices PD(n) as a measure of dissimlarity between such matrices. We demonstrate performance of our algorithm on both artificial and real texture images
    corecore