632 research outputs found

    Universal Image Steganalytic Method

    Get PDF
    In the paper we introduce a new universal steganalytic method in JPEG file format that is detecting well-known and also newly developed steganographic methods. The steganalytic model is trained by MHF-DZ steganographic algorithm previously designed by the same authors. The calibration technique with the Feature Based Steganalysis (FBS) was employed in order to identify statistical changes caused by embedding a secret data into original image. The steganalyzer concept utilizes Support Vector Machine (SVM) classification for training a model that is later used by the same steganalyzer in order to identify between a clean (cover) and steganographic image. The aim of the paper was to analyze the variety in accuracy of detection results (ACR) while detecting testing steganographic algorithms as F5, Outguess, Model Based Steganography without deblocking, JP Hide&Seek which represent the generally used steganographic tools. The comparison of four feature vectors with different lengths FBS (22), FBS (66) FBS(274) and FBS(285) shows promising results of proposed universal steganalytic method comparing to binary methods

    Steganographer Identification

    Full text link
    Conventional steganalysis detects the presence of steganography within single objects. In the real-world, we may face a complex scenario that one or some of multiple users called actors are guilty of using steganography, which is typically defined as the Steganographer Identification Problem (SIP). One might use the conventional steganalysis algorithms to separate stego objects from cover objects and then identify the guilty actors. However, the guilty actors may be lost due to a number of false alarms. To deal with the SIP, most of the state-of-the-arts use unsupervised learning based approaches. In their solutions, each actor holds multiple digital objects, from which a set of feature vectors can be extracted. The well-defined distances between these feature sets are determined to measure the similarity between the corresponding actors. By applying clustering or outlier detection, the most suspicious actor(s) will be judged as the steganographer(s). Though the SIP needs further study, the existing works have good ability to identify the steganographer(s) when non-adaptive steganographic embedding was applied. In this chapter, we will present foundational concepts and review advanced methodologies in SIP. This chapter is self-contained and intended as a tutorial introducing the SIP in the context of media steganography.Comment: A tutorial with 30 page

    Deep Convolutional Neural Network to Detect J-UNIWARD

    Full text link
    This paper presents an empirical study on applying convolutional neural networks (CNNs) to detecting J-UNIWARD, one of the most secure JPEG steganographic method. Experiments guiding the architectural design of the CNNs have been conducted on the JPEG compressed BOSSBase containing 10,000 covers of size 512x512. Results have verified that both the pooling method and the depth of the CNNs are critical for performance. Results have also proved that a 20-layer CNN, in general, outperforms the most sophisticated feature-based methods, but its advantage gradually diminishes on hard-to-detect cases. To show that the performance generalizes to large-scale databases and to different cover sizes, one experiment has been conducted on the CLS-LOC dataset of ImageNet containing more than one million covers cropped to unified size of 256x256. The proposed 20-layer CNN has cut the error achieved by a CNN recently proposed for large-scale JPEG steganalysis by 35%. Source code is available via GitHub: https://github.com/GuanshuoXu/deep_cnn_jpeg_steganalysisComment: Accepted by IH&MMSec 2017. This is a personal cop
    corecore