471 research outputs found

    On the Two-View Geometry of Unsynchronized Cameras

    Full text link
    We present new methods for simultaneously estimating camera geometry and time shift from video sequences from multiple unsynchronized cameras. Algorithms for simultaneous computation of a fundamental matrix or a homography with unknown time shift between images are developed. Our methods use minimal correspondence sets (eight for fundamental matrix and four and a half for homography) and therefore are suitable for robust estimation using RANSAC. Furthermore, we present an iterative algorithm that extends the applicability on sequences which are significantly unsynchronized, finding the correct time shift up to several seconds. We evaluated the methods on synthetic and wide range of real world datasets and the results show a broad applicability to the problem of camera synchronization.Comment: 12 pages, 9 figures, Computer Vision and Pattern Recognition (CVPR) 201

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Wireless Software Synchronization of Multiple Distributed Cameras

    Full text link
    We present a method for precisely time-synchronizing the capture of image sequences from a collection of smartphone cameras connected over WiFi. Our method is entirely software-based, has only modest hardware requirements, and achieves an accuracy of less than 250 microseconds on unmodified commodity hardware. It does not use image content and synchronizes cameras prior to capture. The algorithm operates in two stages. In the first stage, we designate one device as the leader and synchronize each client device's clock to it by estimating network delay. Once clocks are synchronized, the second stage initiates continuous image streaming, estimates the relative phase of image timestamps between each client and the leader, and shifts the streams into alignment. We quantitatively validate our results on a multi-camera rig imaging a high-precision LED array and qualitatively demonstrate significant improvements to multi-view stereo depth estimation and stitching of dynamic scenes. We release as open source 'libsoftwaresync', an Android implementation of our system, to inspire new types of collective capture applications.Comment: Main: 9 pages, 10 figures. Supplemental: 3 pages, 5 figure

    Design and Implementation of WiMAX Baseband System

    Get PDF

    A burst compression and expansion technique for variable-rate users in satellite-switched TDMA networks

    Get PDF
    A burst compression and expansion technique is described for asynchronously interconnecting variable-data-rate users with cost-efficient ground terminals in a satellite-switched, time-division-multiple-access (SS/TDMA) network. Compression and expansion buffers in each ground terminal convert between lower rate, asynchronous, continuous-user data streams and higher-rate TDMA bursts synchronized with the satellite-switched timing. The technique described uses a first-in, first-out (FIFO) memory approach which enables the use of inexpensive clock sources by both the users and the ground terminals and obviates the need for elaborate user clock synchronization processes. A continous range of data rates from kilobits per second to that approaching the modulator burst rate (hundreds of megabits per second) can be accommodated. The technique was developed for use in the NASA Lewis Research Center System Integration, Test, and Evaluation (SITE) facility. Some key features of the technique have also been implemented in the gound terminals developed at NASA Lewis for use in on-orbit evaluation of the Advanced Communications Technology Satellite (ACTS) high burst rate (HBR) system
    • …
    corecore