92,569 research outputs found

    Dynamic feature selection for clustering high dimensional data streams

    Get PDF
    open access articleChange in a data stream can occur at the concept level and at the feature level. Change at the feature level can occur if new, additional features appear in the stream or if the importance and relevance of a feature changes as the stream progresses. This type of change has not received as much attention as concept-level change. Furthermore, a lot of the methods proposed for clustering streams (density-based, graph-based, and grid-based) rely on some form of distance as a similarity metric and this is problematic in high-dimensional data where the curse of dimensionality renders distance measurements and any concept of “density” difficult. To address these two challenges we propose combining them and framing the problem as a feature selection problem, specifically a dynamic feature selection problem. We propose a dynamic feature mask for clustering high dimensional data streams. Redundant features are masked and clustering is performed along unmasked, relevant features. If a feature's perceived importance changes, the mask is updated accordingly; previously unimportant features are unmasked and features which lose relevance become masked. The proposed method is algorithm-independent and can be used with any of the existing density-based clustering algorithms which typically do not have a mechanism for dealing with feature drift and struggle with high-dimensional data. We evaluate the proposed method on four density-based clustering algorithms across four high-dimensional streams; two text streams and two image streams. In each case, the proposed dynamic feature mask improves clustering performance and reduces the processing time required by the underlying algorithm. Furthermore, change at the feature level can be observed and tracked

    Learning in Dynamic Data-Streams with a Scarcity of Labels

    Get PDF
    Analysing data in real-time is a natural and necessary progression from traditional data mining. However, real-time analysis presents additional challenges to batch-analysis; along with strict time and memory constraints, change is a major consideration. In a dynamic stream there is an assumption that the underlying process generating the stream is non-stationary and that concepts within the stream will drift and change over time. Adopting a false assumption that a stream is stationary will result in non-adaptive models degrading and eventually becoming obsolete. The challenge of recognising and reacting to change in a stream is compounded by the scarcity of labels problem. This refers to the very realistic situation in which the true class label of an incoming point is not immediately available (or will never be available) or in situations where manually labelling incoming points is prohibitively expensive. The goal of this thesis is to evaluate unsupervised learning as the basis for online classification in dynamic data-streams with a scarcity of labels. To realise this goal, a novel stream clustering algorithm based on the collective behaviour of ants (Ant Colony Stream Clustering (ACSC)) is proposed. This algorithm is shown to be faster and more accurate than comparative, peer stream-clustering algorithms while requiring fewer sensitive parameters. The principles of ACSC are extended in a second stream-clustering algorithm named Multi-Density Stream Clustering (MDSC). This algorithm has adaptive parameters and crucially, can track clusters and monitor their dynamic behaviour over time. A novel technique called a Dynamic Feature Mask (DFM) is proposed to ``sit on top’’ of these stream-clustering algorithms and can be used to observe and track change at the feature level in a data stream. This Feature Mask acts as an unsupervised feature selection method allowing high-dimensional streams to be clustered. Finally, data-stream clustering is evaluated as an approach to one-class classification and a novel framework (named COCEL: Clustering and One class Classification Ensemble Learning) for classification in dynamic streams with a scarcity of labels is described. The proposed framework can identify and react to change in a stream and hugely reduces the number of required labels (typically less than 0.05% of the entire stream)

    BETULA: Numerically Stable CF-Trees for BIRCH Clustering

    Full text link
    BIRCH clustering is a widely known approach for clustering, that has influenced much subsequent research and commercial products. The key contribution of BIRCH is the Clustering Feature tree (CF-Tree), which is a compressed representation of the input data. As new data arrives, the tree is eventually rebuilt to increase the compression. Afterward, the leaves of the tree are used for clustering. Because of the data compression, this method is very scalable. The idea has been adopted for example for k-means, data stream, and density-based clustering. Clustering features used by BIRCH are simple summary statistics that can easily be updated with new data: the number of points, the linear sums, and the sum of squared values. Unfortunately, how the sum of squares is then used in BIRCH is prone to catastrophic cancellation. We introduce a replacement cluster feature that does not have this numeric problem, that is not much more expensive to maintain, and which makes many computations simpler and hence more efficient. These cluster features can also easily be used in other work derived from BIRCH, such as algorithms for streaming data. In the experiments, we demonstrate the numerical problem and compare the performance of the original algorithm compared to the improved cluster features

    Ant colony stream clustering: A fast density clustering algorithm for dynamic data streams

    Get PDF
    A data stream is a continuously arriving sequence of data and clustering data streams requires additional considerations to traditional clustering. A stream is potentially unbounded, data points arrive on-line and each data point can be examined only once. This imposes limitations on available memory and processing time. Furthermore, streams can be noisy and the number of clusters in the data and their statistical properties can change over time. This paper presents an on-line, bio-inspired approach to clustering dynamic data streams. The proposed Ant-Colony Stream Clustering (ACSC) algorithm is a density based clustering algorithm, whereby clusters are identified as high-density areas of the feature space separated by low-density areas. ACSC identifies clusters as groups of micro-clusters. The tumbling window model is used to read a stream and rough clusters are incrementally formed during a single pass of a window. A stochastic method is employed to find these rough clusters, this is shown to significantly speed the algorithm with only a minor cost to performance, as compared to a deterministic approach. The rough clusters are then refined using a method inspired by the observed sorting behaviour of ants. Ants pick-up and drop items based on the similarity with the surrounding items. Artificial ants sort clusters by probabilistically picking and dropping micro-clusters based on local density and local similarity. Clusters are summarised using their constituent micro-clusters and these summary statistics are stored offline. Experimental results show that the clustering quality of ACSC is scalable, robust to noise and favourable to leading ant-clustering and stream-clustering algorithms. It also requires fewer parameters and less computational time

    Hand gesture recognition based on signals cross-correlation

    Get PDF
    • …
    corecore