415 research outputs found

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    Low-Cost Multiple-MAV SLAM Using Open Source Software

    Get PDF
    We demonstrate a multiple micro aerial vehicle (MAV) system capable of supporting autonomous exploration and navigation in unknown environments using only a sensor commonly found in low-cost, commercially available MAVs—a front-facing monocular camera. We adapt a popular open source monocular SLAM library, ORB-SLAM, to support multiple inputs and present a system capable of effective cross-map alignment that can be theoretically generalized for use with other monocular SLAM libraries. Using our system, a single central ground control station is capable of supporting up to five MAVs simultaneously without a loss in mapping quality as compared to single-MAV ORB-SLAM. We conduct testing using both benchmark datasets and real-world trials to demonstrate the capability and real-time effectiveness

    Optical Channel Impulse Response-Based Localization Using An Artificial Neural Network

    Full text link
    Visible light positioning has the potential to yield sub-centimeter accuracy in indoor environments, yet conventional received signal strength (RSS)-based localization algorithms cannot achieve this because their performance degrades from optical multipath reflection. However, this part of the optical received signal is deterministic due to the often static and predictable nature of the optical wireless channel. In this paper, the performance of optical channel impulse response (OCIR)-based localization is studied using an artificial neural network (ANN) to map embedded features of the OCIR to the user equipment's location. Numerical results show that OCIR-based localization outperforms conventional RSS techniques by two orders of magnitude using only two photodetectors as anchor points. The ANN technique can take advantage of multipath features in a wide range of scenarios, from using only the DC value to relying on high-resolution time sampling that can result in sub-centimeter accuracy

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd

    Mic2Mic: Using Cycle-Consistent Generative Adversarial Networks to Overcome Microphone Variability in Speech Systems

    Full text link
    Mobile and embedded devices are increasingly using microphones and audio-based computational models to infer user context. A major challenge in building systems that combine audio models with commodity microphones is to guarantee their accuracy and robustness in the real-world. Besides many environmental dynamics, a primary factor that impacts the robustness of audio models is microphone variability. In this work, we propose Mic2Mic -- a machine-learned system component -- which resides in the inference pipeline of audio models and at real-time reduces the variability in audio data caused by microphone-specific factors. Two key considerations for the design of Mic2Mic were: a) to decouple the problem of microphone variability from the audio task, and b) put a minimal burden on end-users to provide training data. With these in mind, we apply the principles of cycle-consistent generative adversarial networks (CycleGANs) to learn Mic2Mic using unlabeled and unpaired data collected from different microphones. Our experiments show that Mic2Mic can recover between 66% to 89% of the accuracy lost due to microphone variability for two common audio tasks.Comment: Published at ACM IPSN 201

    Simultaneous Localization and Mapping with Power Network Electromagnetic Field

    Get PDF
    Various sensing modalities have been exploited for indoor location sensing, each of which has well understood limitations, however. This paper presents a first systematic study on using the electromagnetic field (EMF) induced by a building's electric power network for simultaneous localization and mapping (SLAM). A basis of this work is a measurement study showing that the power network EMF sensed by either a customized sensor or smartphone's microphone as a side-channel sensor is spatially distinct and temporally stable. Based on this, we design a SLAM approach that can reliably detect loop closures based on EMF sensing results. With the EMF feature map constructed by SLAM, we also design an efficient online localization scheme for resource-constrained mobiles. Evaluation in three indoor spaces shows that the power network EMF is a promising modality for location sensing on mobile devices, which is able to run in real time and achieve sub-meter accuracy
    • 

    corecore