138 research outputs found

    A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems

    Get PDF
    This chapter presents an overview of optimization techniques followed by a brief survey on several swarm-based natural inspired algorithms which were introduced in the last decade. These techniques were inspired by the natural processes of plants, foraging behaviors of insects and social behaviors of animals. These swam intelligent methods have been tested on various standard benchmark problems and are capable in solving a wide range of optimization issues including stochastic, robust and dynamic problems

    Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals

    Full text link
    Thesis (Ph.D.)--Boston UniversityBrain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design. The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%. The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI

    High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems

    Get PDF
    This is the final technical report for the project entitled: "High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems", funded at NPAC by the DAO at NASA/GSFC. First, the motivation for the project is given in the introductory section, followed by the executive summary of major accomplishments and the list of project-related publications. Detailed analysis and description of research results is given in subsequent chapters and in the Appendix

    Classification in high dimensional data using sparse techniques

    Get PDF
    Thesis (MCom)--Stellenbosch University, 2019.ENGLISH SUMMARY : Traditional classification techniques fail in the analysis of high-dimensional data. In response, new classification techniques and accompanying theory have recently emerged. These techniques are natural extensions of linear discriminant analysis. The aim is to solve the statistical challenges that arise with high-dimensional data by utilising the sparse coding (Johnstone and Titterington, 2009). In this project, our focus is on the following techniques: penalized LDA-FL, penalized LDA-FL, sparse discriminant analysis, sparse mixture discriminant analysis and sparse partial least squares. We evaluated the performance of these techniques in simulation studies and on two microarray gene expression datasets by comparing the test error rates and the number of features selected. In the simulation studies, we found that performance vary depending on the simulation set-up and on the classification technique used. The two microarray gene expression datasets are considered for practical implementation of these techniques. The results from the microarray gene expression datasets showed that these classification techniques achieve satisfactory accuracy.AFRIKAANSE OPSOMMING : Geen opsomming beskikbaar

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems
    corecore