29,872 research outputs found

    A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data

    Get PDF
    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes

    The detection of globular clusters in galaxies as a data mining problem

    Get PDF
    We present an application of self-adaptive supervised learning classifiers derived from the Machine Learning paradigm, to the identification of candidate Globular Clusters in deep, wide-field, single band HST images. Several methods provided by the DAME (Data Mining & Exploration) web application, were tested and compared on the NGC1399 HST data described in Paolillo 2011. The best results were obtained using a Multi Layer Perceptron with Quasi Newton learning rule which achieved a classification accuracy of 98.3%, with a completeness of 97.8% and 1.6% of contamination. An extensive set of experiments revealed that the use of accurate structural parameters (effective radius, central surface brightness) does improve the final result, but only by 5%. It is also shown that the method is capable to retrieve also extreme sources (for instance, very extended objects) which are missed by more traditional approaches.Comment: Accepted 2011 December 12; Received 2011 November 28; in original form 2011 October 1

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset

    Get PDF
    Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics

    Clustering analysis of railway driving missions with niching

    Get PDF
    A wide number of applications requires classifying or grouping data into a set of categories or clusters. Most popular clustering techniques to achieve this objective are K-means clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting of the cluster number. In this paper, a clustering method based on the use of a niching genetic algorithm is presented, with the aim of finding the best compromise between the inter-cluster distance maximization and the intra-cluster distance minimization. This method is applied to three clustering benchmarks and to the classification of driving missions for railway applications
    • …
    corecore