59,435 research outputs found

    How active perception and attractor dynamics shape perceptual categorization: A computational model

    Get PDF
    We propose a computational model of perceptual categorization that fuses elements of grounded and sensorimotor theories of cognition with dynamic models of decision-making. We assume that category information consists in anticipated patterns of agent–environment interactions that can be elicited through overt or covert (simulated) eye movements, object manipulation, etc. This information is firstly encoded when category information is acquired, and then re-enacted during perceptual categorization. The perceptual categorization consists in a dynamic competition between attractors that encode the sensorimotor patterns typical of each category; action prediction success counts as ‘‘evidence’’ for a given category and contributes to falling into the corresponding attractor. The evidence accumulation process is guided by an active perception loop, and the active exploration of objects (e.g., visual exploration) aims at eliciting expected sensorimotor patterns that count as evidence for the object category. We present a computational model incorporating these elements and describing action prediction, active perception, and attractor dynamics as key elements of perceptual categorizations. We test the model in three simulated perceptual categorization tasks, and we discuss its relevance for grounded and sensorimotor theories of cognition.Peer reviewe

    Automatic categorization of diverse experimental information in the bioscience literature

    Get PDF
    Background: Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions: Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Embedding Feature Selection for Large-scale Hierarchical Classification

    Full text link
    Large-scale Hierarchical Classification (HC) involves datasets consisting of thousands of classes and millions of training instances with high-dimensional features posing several big data challenges. Feature selection that aims to select the subset of discriminant features is an effective strategy to deal with large-scale HC problem. It speeds up the training process, reduces the prediction time and minimizes the memory requirements by compressing the total size of learned model weight vectors. Majority of the studies have also shown feature selection to be competent and successful in improving the classification accuracy by removing irrelevant features. In this work, we investigate various filter-based feature selection methods for dimensionality reduction to solve the large-scale HC problem. Our experimental evaluation on text and image datasets with varying distribution of features, classes and instances shows upto 3x order of speed-up on massive datasets and upto 45% less memory requirements for storing the weight vectors of learned model without any significant loss (improvement for some datasets) in the classification accuracy. Source Code: https://cs.gmu.edu/~mlbio/featureselection.Comment: IEEE International Conference on Big Data (IEEE BigData 2016

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Adaptive text mining: Inferring structure from sequences

    Get PDF
    Text mining is about inferring structure from sequences representing natural language text, and may be defined as the process of analyzing text to extract information that is useful for particular purposes. Although hand-crafted heuristics are a common practical approach for extracting information from text, a general, and generalizable, approach requires adaptive techniques. This paper studies the way in which the adaptive techniques used in text compression can be applied to text mining. It develops several examples: extraction of hierarchical phrase structures from text, identification of keyphrases in documents, locating proper names and quantities of interest in a piece of text, text categorization, word segmentation, acronym extraction, and structure recognition. We conclude that compression forms a sound unifying principle that allows many text mining problems to be tacked adaptively

    Chi-square-based scoring function for categorization of MEDLINE citations

    Full text link
    Objectives: Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Methods: Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Results: Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine learning algorithms (support vector machines, decision trees, na\"ive Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine learning algorithms. Conclusions: We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.Comment: 34 pages, 2 figure
    corecore