3,413 research outputs found

    Application of Multilabel Learning Using the Relevant Feature for Each Label in Chronic Gastritis Syndrome Diagnosis

    Get PDF
    Background. In Traditional Chinese Medicine (TCM), most of the algorithms are used to solve problems of syndrome diagnosis that only focus on one syndrome, that is, single label learning. However, in clinical practice, patients may simultaneously have more than one syndrome, which has its own symptoms (signs). Methods. We employed a multilabel learning using the relevant feature for each label (REAL) algorithm to construct a syndrome diagnostic model for chronic gastritis (CG) in TCM. REAL combines feature selection methods to select the significant symptoms (signs) of CG. The method was tested on 919 patients using the standard scale. Results. The highest prediction accuracy was achieved when 20 features were selected. The features selected with the information gain were more consistent with the TCM theory. The lowest average accuracy was 54% using multi-label neural networks (BP-MLL), whereas the highest was 82% using REAL for constructing the diagnostic model. For coverage, hamming loss, and ranking loss, the values obtained using the REAL algorithm were the lowest at 0.160, 0.142, and 0.177, respectively. Conclusion. REAL extracts the relevant symptoms (signs) for each syndrome and improves its recognition accuracy. Moreover, the studies will provide a reference for constructing syndrome diagnostic models and guide clinical practice

    Serum cytokine profiling analysis for zheng differentiation in chronic hepatitis B

    Get PDF
    Approval document of the research protocol by the Medical Ethics Committee of Shuguang Hospital

    Combining Artificial Intelligence with Traditional Chinese Medicine for Intelligent Health Management

    Get PDF
    The growth of artificial intelligence (AI) is being referred to as the beginning of "the fourth industrial revolution". With the rapid development of hardware, algorithms, and applications, AI not only provides a new concept and relevant solutions to solve the problem of complexity science but also provides a new concept and method to promote the development of traditional Chinese medicine (TCM). In this study, based on the research and development of AI technology applications in biomedical and clinical diagnosis and treatment, we introduce AI technologies in current TCM research. This can have applications in intelligent clinical information acquisition, intelligent clinical decision, and efficacy evaluation of TCM; intelligent classification management, intelligent prescription, and drug research in Chinese herbal medicine; and health management. Furthermore, we propose a framework of "intelligent TCM" and outline its development prospects

    In Silico Syndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine

    Get PDF
    Coronary artery disease (CAD) is the leading causes of deaths in the world. The differentiation of syndrome (ZHENG) is the criterion of diagnosis and therapeutic in TCM. Therefore, syndrome prediction in silico can be improving the performance of treatment. In this paper, we present a Bayesian network framework to construct a high-confidence syndrome predictor based on the optimum subset, that is, collected by Support Vector Machine (SVM) feature selection. Syndrome of CAD can be divided into asthenia and sthenia syndromes. According to the hierarchical characteristics of syndrome, we firstly label every case three types of syndrome (asthenia, sthenia, or both) to solve several syndromes with some patients. On basis of the three syndromes' classes, we design SVM feature selection to achieve the optimum symptom subset and compare this subset with Markov blanket feature select using ROC. Using this subset, the six predictors of CAD's syndrome are constructed by the Bayesian network technique. We also design Naïve Bayes, C4.5 Logistic, Radial basis function (RBF) network compared with Bayesian network. In a conclusion, the Bayesian network method based on the optimum symptoms shows a practical method to predict six syndromes of CAD in TCM

    Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Get PDF
    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification

    Discovering medication patterns for high-complexity drug-using diseases through electronic medical records

    Get PDF
    An Electronic Medical Record (EMR) is a professional document that contains all data generated during the treatment process. The EMR can utilize various data formats, such as numerical data, text, and images. Mining the information and knowledge hidden in the huge amount of EMR data is an essential requirement for clinical decision support, such as clinical pathway formulation and evidence-based medical research. In this paper, we propose a machine-learning-based framework to mine the hidden medication patterns in EMR text. The framework systematically integrates the Jaccard similarity evaluation, spectral clustering, the modified Latent Dirichlet Allocation and cross-matching among multiple features to find the residuals that describe additional knowledge and clusters hidden in multiple perspectives of highly complex medication patterns. These methods work together, step by step to reveal the underlying medication pattern. We evaluated the method by using real data from EMR text (patients with cirrhotic ascites) from a large hospital in China. The proposed framework outperforms other approaches for medication pattern discovery, especially for this disease with subtle medication treatment variances. The results also revealed little overlap among the discovered patterns; thus, the distinct features of each pattern are well studied through the proposed framework

    TCM-SD: A Benchmark for Probing Syndrome Differentiation via Natural Language Processing

    Full text link
    Traditional Chinese Medicine (TCM) is a natural, safe, and effective therapy that has spread and been applied worldwide. The unique TCM diagnosis and treatment system requires a comprehensive analysis of a patient's symptoms hidden in the clinical record written in free text. Prior studies have shown that this system can be informationized and intelligentized with the aid of artificial intelligence (AI) technology, such as natural language processing (NLP). However, existing datasets are not of sufficient quality nor quantity to support the further development of data-driven AI technology in TCM. Therefore, in this paper, we focus on the core task of the TCM diagnosis and treatment system -- syndrome differentiation (SD) -- and we introduce the first public large-scale dataset for SD, called TCM-SD. Our dataset contains 54,152 real-world clinical records covering 148 syndromes. Furthermore, we collect a large-scale unlabelled textual corpus in the field of TCM and propose a domain-specific pre-trained language model, called ZY-BERT. We conducted experiments using deep neural networks to establish a strong performance baseline, reveal various challenges in SD, and prove the potential of domain-specific pre-trained language model. Our study and analysis reveal opportunities for incorporating computer science and linguistics knowledge to explore the empirical validity of TCM theories.Comment: 10 main pages + 2 reference pages, to appear at CCL202
    corecore