772 research outputs found

    Android Malware Characterization using Metadata and Machine Learning Techniques

    Get PDF
    Android Malware has emerged as a consequence of the increasing popularity of smartphones and tablets. While most previous work focuses on inherent characteristics of Android apps to detect malware, this study analyses indirect features and meta-data to identify patterns in malware applications. Our experiments show that: (1) the permissions used by an application offer only moderate performance results; (2) other features publicly available at Android Markets are more relevant in detecting malware, such as the application developer and certificate issuer, and (3) compact and efficient classifiers can be constructed for the early detection of malware applications prior to code inspection or sandboxing.Comment: 4 figures, 2 tables and 8 page

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead

    A Hybrid Approach for Android Malware Detection and Family Classification

    Get PDF
    With the increase in the popularity of mobile devices, malicious applications targeting Android platform have greatly increased. Malware is coded so prudently that it has become very complicated to identify. The increase in the large amount of malware every day has made the manual approaches inadequate for detecting the malware. Nowadays, a new malware is characterized by sophisticated and complex obfuscation techniques. Thus, the static malware analysis alone is not enough for detecting it. However, dynamic malware analysis is appropriate to tackle evasion techniques but incapable to investigate all the execution paths and also it is very time consuming. So, for better detection and classification of Android malware, we propose a hybrid approach which integrates the features obtained after performing static and dynamic malware analysis. This approach tackles the problem of analyzing, detecting and classifying the Android malware in a more efficient manner. In this paper, we have used a robust set of features from static and dynamic malware analysis for creating two datasets i.e. binary and multiclass (family) classification datasets. These are made publically available on GitHub and Kaggle with the aim to help researchers and anti-malware tool creators for enhancing or developing new techniques and tools for detecting and classifying Android malware. Various machine learning algorithms are employed to detect and classify malware using the features extracted after performing static and dynamic malware analysis. The experimental outcomes indicate that hybrid approach enhances the accuracy of detection and classification of Android malware as compared to the case when static and dynamic features are considered alone

    DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkAndroid malware has continued to grow in volume and complexity posing significant threats to the security of mobile devices and the services they enable. This has prompted increasing interest in employing machine learning to improve Android malware detection. In this paper, we present a novel classifier fusion approach based on a multilevel architecture that enables effective combination of machine learning algorithms for improved accuracy. The framework (called DroidFusion), generates a model by training base classifiers at a lower level and then applies a set of ranking-based algorithms on their predictive accuracies at the higher level in order to derive a final classifier. The induced multilevel DroidFusion model can then be utilized as an improved accuracy predictor for Android malware detection. We present experimental results on four separate datasets to demonstrate the effectiveness of our proposed approach. Furthermore, we demonstrate that the DroidFusion method can also effectively enable the fusion of ensemble learning algorithms for improved accuracy. Finally, we show that the prediction accuracy of DroidFusion, despite only utilizing a computational approach in the higher level, can outperform stacked generalization, a well-known classifier fusion method that employs a meta-classifier approach in its higher level
    corecore