83,865 research outputs found

    Various Feature Selection Techniques in Type 2 Diabetic Patients for the Prediction of Cardiovascular Disease

    Get PDF
    Cardiovascular disease (CVD) is a serious but preventable complication of type 2 diabetes mellitus (T2DM) that results in substantial disease burden, increased health services use, and higher risk of premature mortality [10]. People with diabetes are also at a greatly increased risk of cardiovascular which results in sudden death, which increases year by year. Data mining is the search for relationships and global patterns that exist in large databases but are `hidden' among the vast amount of data, such as a relationship between patient data and their medical diagnosis. Usually medical databases of type 2 diabetic patients are high dimensional in nature. If a training dataset contains irrelevant and redundant features (i.e., attributes), classification analysis may produce less accurate results. In order for data mining algorithms to perform efficiently and effectively on high-dimensional data, it is imperative to remove irrelevant and redundant features. Feature selection is one of the important and frequently used data preprocessing techniques for data mining applications in medicine. Many of the research area in data mining has improved the predictive accuracy of the classifiers by applying the various techniques of feature selection This paper illustrates, the application of feature selection technique in medical databases, will enable to find small number of informative features leading to potential improvement in medical diagnosis. It is proposed to find an optimal feature subset of the PIMA Indian Diabetes Dataset using Artificial Bee Colony technique with Differential Evolution, Symmetrical Uncertainty Attribute set Evaluator and Fast Correlation-Based Filter (FCBF). Then Mutual information based feature selection is done by introducing normalized mutual information feature selection (NMIFS). And valid classes of input features are selected by applying Hybrid Fuzzy C Means algorithm (HFCM)

    Hopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images

    Get PDF
    We study filter–based feature selection methods for classification of biomedical images. For feature selection, we use two filters — a relevance filter which measures usefulness of individual features for target prediction, and a redundancy filter, which measures similarity between features. As selection method that combines relevance and redundancy we try out a Hopfield network. We experimentally compare selection methods, running unitary redundancy and relevance filters, against a greedy algorithm with redundancy thresholds [9], the min-redundancy max-relevance integration [8,23,36], and our Hopfield network selection. We conclude that on the whole, Hopfield selection was one of the most successful methods, outperforming min-redundancy max-relevance when\ud more features are selected

    Neural Network and Bioinformatic Methods for Predicting HIV-1 Protease Inhibitor Resistance

    Full text link
    This article presents a new method for predicting viral resistance to seven protease inhibitors from the HIV-1 genotype, and for identifying the positions in the protease gene at which the specific nature of the mutation affects resistance. The neural network Analog ARTMAP predicts protease inhibitor resistance from viral genotypes. A feature selection method detects genetic positions that contribute to resistance both alone and through interactions with other positions. This method has identified positions 35, 37, 62, and 77, where traditional feature selection methods have not detected a contribution to resistance. At several positions in the protease gene, mutations confer differing degress of resistance, depending on the specific amino acid to which the sequence has mutated. To find these positions, an Amino Acid Space is introduced to represent genes in a vector space that captures the functional similarity between amino acid pairs. Feature selection identifies several new positions, including 36, 37, and 43, with amino acid-specific contributions to resistance. Analog ARTMAP networks applied to inputs that represent specific amino acids at these positions perform better than networks that use only mutation locations.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Dimension Reduction by Mutual Information Discriminant Analysis

    Get PDF
    In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction using mutual information (MI). However, it is not always easy to obtain an accurate estimation for high-dimensional MI. In this paper, we propose an efficient method for feature extraction that is based on one-dimensional MI estimations. We will refer to this algorithm as mutual information discriminant analysis (MIDA). The performance of this proposed method was evaluated using UCI databases. The results indicate that MIDA provides robust performance over different data sets with different characteristics and that MIDA always performs better than, or at least comparable to, the best performing algorithms.Comment: 13pages, 3 tables, International Journal of Artificial Intelligence & Application
    • …
    corecore