3,636 research outputs found

    Hi teijo shingo shori to shinraido omomizuke ni yoru robasuto onsei ninshiki

    Get PDF
    制度:新 ; 報告番号:甲3283号 ; 学位の種類:博士(工学) ; 授与年月日:2011/2/25 ; 早大学位記番号:新558

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    ART-EMAP: A Neural Network Architecture for Object Recognition by Evidence Accumulation

    Full text link
    A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0083

    Unsupervised domain adaptation under label space mismatch for speech classification

    Get PDF
    Unsupervised domain adaptation using adversarial learning has shown promise in adapting speech models from a labeled source domain to an unlabeled target domain. However, prior works make a strong assumption that the label spaces of source and target domains are identical, which can be easily violated in real-world conditions. We present AMLS, an end-to-end architecture that performs Adaptation under Mismatched Label Spaces using two weighting schemes to separate shared and private classes in each domain. An evaluation on three speech adaptation tasks, namely gender, microphone, and emotion adaptation, shows that AMLS provides significant accuracy gains over baselines used in speech and vision adaptation tasks. Our contribution paves the way for applying UDA to speech models in unconstrained settings with no assumptions on the source and target label spaces
    corecore