26,150 research outputs found

    Comparing CNN and Human Crafted Features for Human Activity Recognition

    Get PDF
    Deep learning techniques such as Convolutional Neural Networks (CNNs) have shown good results in activity recognition. One of the advantages of using these methods resides in their ability to generate features automatically. This ability greatly simplifies the task of feature extraction that usually requires domain specific knowledge, especially when using big data where data driven approaches can lead to anti-patterns. Despite the advantage of this approach, very little work has been undertaken on analyzing the quality of extracted features, and more specifically on how model architecture and parameters affect the ability of those features to separate activity classes in the final feature space. This work focuses on identifying the optimal parameters for recognition of simple activities applying this approach on both signals from inertial and audio sensors. The paper provides the following contributions: (i) a comparison of automatically extracted CNN features with gold standard Human Crafted Features (HCF) is given, (ii) a comprehensive analysis on how architecture and model parameters affect separation of target classes in the feature space. Results are evaluated using publicly available datasets. In particular, we achieved a 93.38% F-Score on the UCI-HAR dataset, using 1D CNNs with 3 convolutional layers and 32 kernel size, and a 90.5% F-Score on the DCASE 2017 development dataset, simplified for three classes (indoor, outdoor and vehicle), using 2D CNNs with 2 convolutional layers and a 2x2 kernel size

    Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition

    Get PDF
    Edge computing aims to integrate computing into everyday settings, enabling the system to be context-aware and private to the user. With the increasing success and popularity of deep learning methods, there is an increased demand to leverage these techniques in mobile and wearable computing scenarios. In this paper, we present an assessment of a deep human activity recognition system’s memory and execution time requirements, when implemented on a mid-range smartphone class hardware and the memory implications for embedded hardware. This paper presents the design of a convolutional neural network (CNN) in the context of human activity recognition scenario. Here, layers of CNN automate the feature learning and the influence of various hyper-parameters such as the number of filters and filter size on the performance of CNN. The proposed CNN showed increased robustness with better capability of detecting activities with temporal dependence compared to models using statistical machine learning techniques. The model obtained an accuracy of 96.4% in a five-class static and dynamic activity recognition scenario. We calculated the proposed model memory consumption and execution time requirements needed for using it on a mid-range smartphone. Per-channel quantization of weights and per-layer quantization of activation to 8-bits of precision post-training produces classification accuracy within 2% of floating-point networks for dense, convolutional neural network architecture. Almost all the size and execution time reduction in the optimized model was achieved due to weight quantization. We achieved more than four times reduction in model size when optimized to 8-bit, which ensured a feasible model capable of fast on-device inference

    Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition

    Get PDF
    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation
    • …
    corecore