492 research outputs found

    Ocean feature recognition using genetic algorithms with fuzzy fitness functions (GA/F3)

    Get PDF
    A model for genetic algorithms with semantic nets is derived for which the relationships between concepts is depicted as a semantic net. An organism represents the manner in which objects in a scene are attached to concepts in the net. Predicates between object pairs are continuous valued truth functions in the form of an inverse exponential function (e sub beta lxl). 1:n relationships are combined via the fuzzy OR (Max (...)). Finally, predicates between pairs of concepts are resolved by taking the average of the combined predicate values of the objects attached to the concept at the tail of the arc representing the predicate in the semantic net. The method is illustrated by applying it to the identification of oceanic features in the North Atlantic

    Tracking Dynamic Features in Image Sequences.

    Get PDF
    This dissertation deals with detecting and tracking dynamic features in image sequences using digital image analysis algorithms. The tracking problem is complicated in oceanographic images due to the dynamic nature of the features. Specifically, the features of interest move, change size and shape. In the first part of the dissertation, the design and development of a new segmentation algorithm, Histogram-based Morphological Edge Detector (HMED), is presented. Mathematical morphology has been used in the past to develop efficient and robust edge detectors. But these morphological edge detectors do not extract weak gradient edge pixels, and they introduce spurious edge pixels. The primary reason for this is due to the fact that the morphological operations are defined in the domain of a pixel\u27s neighborhood. HMED defines new operations, namely H-dilation and H-erosion, which are defined in the domain of the histogram of the pixel\u27s neighborhood. The motivation for incorporating the histogram into the dilation and erosion is primarily due to the rich information content in the histogram compared to the one available in the pixel\u27s neighborhood. As a result, HMED extracts weak gradient pixels while suppressing the spurious edge pixels. An extensive comparison of all morphological edge detectors in the context of oceanographic digital images is also presented. In the second part of the dissertation, a new augmented region and edge segmentation technique for the interpretation of oceanographic features present in the AVHRR image is presented. The augmented technique uses a topography-based method that extracts topolographical labels such as concave, convex and flat pixels from the image. In this technique, first a bicubic polynomial is fitted to a pixel and its neighborhood, and topolographical label is assigned based on the first and second directional derivatives of the polynomial surface. Second, these labeled pixels are grouped and assembled into edges and regions. The augmented technique blends the edge and region information on a proximity based criterion to detect the features. A number of experimental results are also provided to show the significant improvement in tracking the features using the augmented technique over other previously designed techniques

    Earth resources: A continuing bibliography (issue 26)

    Get PDF
    This bibliography lists 480 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1, 1980 and June 30, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Feature Extraction and Classification from Planetary Science Datasets enabled by Machine Learning

    Full text link
    In this paper we present two examples of recent investigations that we have undertaken, applying Machine Learning (ML) neural networks (NN) to image datasets from outer planet missions to achieve feature recognition. Our first investigation was to recognize ice blocks (also known as rafts, plates, polygons) in the chaos regions of fractured ice on Europa. We used a transfer learning approach, adding and training new layers to an industry-standard Mask R-CNN (Region-based Convolutional Neural Network) to recognize labeled blocks in a training dataset. Subsequently, the updated model was tested against a new dataset, achieving 68% precision. In a different application, we applied the Mask R-CNN to recognize clouds on Titan, again through updated training followed by testing against new data, with a precision of 95% over 369 images. We evaluate the relative successes of our techniques and suggest how training and recognition could be further improved. The new approaches we have used for planetary datasets can further be applied to similar recognition tasks on other planets, including Earth. For imagery of outer planets in particular, the technique holds the possibility of greatly reducing the volume of returned data, via onboard identification of the most interesting image subsets, or by returning only differential data (images where changes have occurred) greatly enhancing the information content of the final data stream

    User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    Get PDF
    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data

    Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Get PDF
    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined

    A Deep Learning-Based Automatic Object Detection Method for Autonomous Driving Ships

    Get PDF
    An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own. Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years. In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated a Sea-object Image Dataset (SID) specifically for this project. Then, by utilizing a pre-trained RetinaNet model on a large-scale object detection dataset named Microsoft COCO, we further fine-tune it on our SID dataset. We focused on sea objects that may potentially cause collisions or other types of maritime accidents. Our final model can effectively detect various types of floating or surrounding objects and classify them into one of the ten predefined significant classes, which are buoy, ship, island, pier, person, waves, rocks, buildings, lighthouse, and fish. Experimental results have demonstrated its good performance

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    The state-of-the-art progress in cloud detection, identification, and tracking approaches: a systematic review

    Get PDF
    A cloud is a mass of water vapor floating in the atmosphere. It is visible from the ground and can remain at a variable height for some time. Clouds are very important because their interaction with the rest of the atmosphere has a decisive influence on weather, for instance by sunlight occlusion or by bringing rain. Weather denotes atmosphere behavior and is determinant in several human activities, such as agriculture or energy capture. Therefore, cloud detection is an important process about which several methods have been investigated and published in the literature. The aim of this paper is to review some of such proposals and the papers that have been analyzed and discussed can be, in general, classified into three types. The first one is devoted to the analysis and explanation of clouds and their types, and about existing imaging systems. Regarding cloud detection, dealt with in a second part, diverse methods have been analyzed, i.e., those based on the analysis of satellite images and those based on the analysis of images from cameras located on Earth. The last part is devoted to cloud forecast and tracking. Cloud detection from both systems rely on thresholding techniques and a few machine-learning algorithms. To compute the cloud motion vectors for cloud tracking, correlation-based methods are commonly used. A few machine-learning methods are also available in the literature for cloud tracking, and have been discussed in this paper too

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72
    corecore