923 research outputs found

    On the investigation of a novel x-ray imaging techniques in radiation oncology

    Get PDF
    Radiation therapy is indicated for nearly 50% of cancer patients in Australia. Radiation therapy requires accurate delivery of ionising radiation to the neoplastic tissue and pre-treatment in situ x-ray imaging plays an important role in meeting treatment accuracy requirements. Four dimensional cone-beam computed tomography (4D CBCT) is one such pre-treatment imaging technique that can help to visualise tumour target motion due to breathing at the time of radiation treatment delivery. Measuring and characterising the target motion can help to ensure highly accurate therapeutic x-ray beam delivery. In this thesis, a novel pre-treatment x-ray imaging technique, called Respiratory Triggered 4D cone-beam Computed Tomography (RT 4D CBCT), is conceived and investigated. Specifically, the aim of this work is to progress the 4D CBCT imaging technology by investigating the use of a patient’s breathing signal to improve and optimise the use of imaging radiation in 4D CBCT to facilitate the accurate delivery of radiation therapy. These investigations are presented in three main studies: 1. Introduction to the concept of respiratory triggered four dimensional conebeam computed tomography. 2. A simulation study exploring the behaviour of RT 4D CBCT using patientmeasured respiratory data. 3. The experimental realisation of RT 4D CBCT working in a real-time acquisitions setting. The major finding from this work is that RT 4D CBCT can provide target motion information with a 50% reduction in the x-ray imaging dose applied to the patient

    EVALUATION OF ARTIFACTS IN EXPERIMENTAL CINE 4D CT ACQUISITION METHODS

    Get PDF
    Four-dimensional computed tomography (4D CT) has increased the accuracy of radiation treatment planning for patients in whom the extent of target motion is large. 4D CT has become a standard of care for radiation treatment simulation, allowing decreased motion artifacts and increased spatiotemporal localization of anatomical structures that move. However, motion artifacts may still remain. These artifacts, or artificial anatomic spatial distributions, add a systematic uncertainty to the treatment process and limit the accuracy of lung function images derived from CT. We proposed to reduce the motion artifacts in cine 4D CT by using three novel investigational 4D CT acquisition methods: (1) oversampling the data acquired, (2) gating the x-ray beam with breathing irregularities, and (3) rescanning areas of the clinical standard 4D CT associated with high breathing irregularities. These experimental acquisitions were tested through a protocol approved by the institutional review board with 18 patients with a primary thoracic malignancy receiving a standard 4D CT scan for radiation treatment simulation. The artifact presence in all 4D CT scans was assessed by an automated artifact quantification metric. This artifact metric was validated by a rigorous receiver operating characteristic (ROC) analysis using a high-quality dataset derived from a group of expert observers who reached a consensus decision on the artifact frequency and magnitude for each of 10 clinical 4D CT scans from patients with primary thoracic cancer. The clinical and experimental 4D CT acquisitions from the 18 patients on the protocol were post-processed by the clinical standard of phase sorting and by an experimental phase sorting that incorporated the validated artifact metric. The 4D CT acquisition and processing method judged to be the most improved was the oversampling acquisition with the experimental sorting. The reproducibility of this improved method was tested on a second distinct cohort of 10 patients with a primary thoracic malignancy. Those patients received a clinical phase-sorted 4D CT immediately followed by three independent oversampling acquisitions, processed by the experimental sorting method and evaluated using the artifact metric. The experimental-sorted oversampling acquisition produced a statistically significant artifact reduction (27% and 28% per cohort) from the phase-sorted clinical standard acquisition

    Intracardiac Ultrasound Guided Systems for Transcatheter Cardiac Interventions

    Get PDF
    Transcatheter cardiac interventions are characterized by their percutaneous nature, increased patient safety, and low hospitalization times. Transcatheter procedures involve two major stages: navigation towards the target site and the positioning of tools to deliver the therapy, during which the interventionalists face the challenge of visualizing the anatomy and the relative position of the tools such as a guidewire. Fluoroscopic and transesophageal ultrasound (TEE) imaging are the most used techniques in cardiac procedures; however, they possess the disadvantage of radiation exposure and suboptimal imaging. This work explores the potential of intracardiac ultrasound (ICE) within an image guidance system (IGS) to facilitate the two stages of cardiac interventions. First, a novel 2.5D side-firing, conical Foresight ICE probe (Conavi Medical Inc., Toronto) is characterized, calibrated, and tracked using an electromagnetic sensor. The results indicate an acceptable tracking accuracy within some limitations. Next, an IGS is developed for navigating the vessels without fluoroscopy. A forward-looking, tracked ICE probe is used to reconstruct the vessel on a phantom which mimics the ultrasound imaging of an animal vena cava. Deep learning methods are employed to segment the complex vessel geometry from ICE imaging for the first time. The ICE-reconstructed vessel showed a clinically acceptable range of accuracy. Finally, a guidance system was developed to facilitate the positioning of tools during a tricuspid valve repair. The designed system potentially facilitates the positioning of the TriClip at the coaptation gap by pre-mapping the corresponding site of regurgitation in 3D tracking space

    3D Reconstruction of Interventional Material from Very Few X-Ray Projections for Interventional Image Guidance

    Get PDF
    Today, minimally invasive endovascular interventions are usually guided by 2D fluoroscopy, i.e. a live 2D X-ray image. However, 3D fluoroscopy, i.e. a live 3D image reconstructed from a stream of 2D X-ray images, could improve spatial awareness. 3D fluoroscopy is, however, not used today, since no appropriate 3D reconstruction algorithm is known. Existing algorithms for the real-time reconstruction of interventional material (guidewires, stents, catheters, etc.) are either only capable of reconstructing a single guidewire or catheter, or use too many X-ray images and therefore too much dose per 3D reconstruction. The goal of this thesis was to reconstruct complex arrangements of interventional material from as few X-ray images as possible. To this end, a previously proposed algorithm for the reconstruction of interventional material from four X-ray images was adapted. Five key improvements allowed to reduce the number of X-ray images per 3D reconstruction from four to two: a) use of temporal information in a rotating imaging setup, b) separate reconstruction of different types of interventional material enabled by the computation of semantic interventional material extraction images, c) compensation of stent motion by spatial transformer networks, d) per-projection backprojection and e) binarization of the guidewire extraction images. While previously only single curves could be reconstructed from two newly acquired X-ray images, the proposed pipeline can reconstruct stents and even stent-guidewire combinations. Submillimeter reconstruction accuracy was demonstrated on measured X-ray images of interventional material inside an anthropomorphic phantom with simulated respiratory motion. Measurements of the dose area product rate of the proposed 3D reconstruction pipeline indicate a dose burden roughly similar to that of 2D fluoroscopy

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Ultrasound Guidance in Perioperative Care

    Get PDF
    • …
    corecore