1,555 research outputs found

    Generating and analyzing synthetic finger vein images

    Get PDF
    Abstract: The finger-vein biometric offers higher degree of security, personal privacy and strong anti-spoofing capabilities than most other biometric modalities employed today. Emerging privacy concerns with the database acquisition and lack of availability of large scale finger-vein database have posed challenges in exploring this technology for large scale applications. This paper details the first such attempt to synthesize finger-vein images and presents analysis of synthesized images for the biometrics authentication. We generate a database of 50,000 finger vein images, corresponding to 5000 different subjects, with 10 different synthesized finger-vein images from each of the subject. We use tractable probability models to compare synthesized finger-vein images with the real finger- vein images for their image variability. This paper also presents matching accuracy using the synthesized finger-vein database from 5000 different subjects, using 225000 genuine and 1249750000 impostor matching scores, which suggests significant promises from this finger-vein biometric modality for large scale biometrics applications

    Finger vein verification algorithm based on fully convolutional neural network and conditional random field

    Get PDF
    Owing to the complexity of finger vein patterns in shape and spatial dependence, the existing methods suffer from an inability to obtain accurate and stable finger vein features. This paper, so as to compensate this defect, proposes an end-to-end model to extract vein textures through integrating the fully convolutional neural network (FCN) with conditional random field (CRF). Firstly, to reduce missing pixels during ROI extraction, the method of sliding window summation is employed to filter and adjusted with self-built tools. In addition, the traditional baselines are endowed with different weights to automatically assign labels. Secondly, the deformable convolution network, through replacing the plain counterparts in the standard U-Net mode, can capture the complex venous structural features by adaptively adjusting the receptive fields according to veins' scales and shapes. Moreover, the above features can be further mined and accumulated by combining the recurrent neural network (RNN) and the residual network (ResNet). With the steps mentioned above, the fully convolutional neural network is constructed. Finally, the CRF with Gaussian pairwise potential conducts mean-field approximate inference as the RNN, and then is embedded as a part of the FCN, so that the model can fully integrate CRF with FCNs, which provides the possibility to involve the usual back-propagation algorithm in training the whole deep network end-to-end. The proposed models in this paper were tested on three public finger vein datasets SDUMLA, MMCBNU and HKPU with experimental results to certify their superior performance on finger-vein verification tasks compared with other equivalent models including U-Net

    Improved methods for finger vein identification using composite median-wiener filter and hierarchical centroid features extraction

    Get PDF
    Finger vein identification is a potential new area in biometric systems. Finger vein patterns contain highly discriminative characteristics, which are difficult to be forged because they reside underneath the skin of the finger and require a specific device to capture them. Research have been carried out in this field but there is still an unresolved issue related to low-quality data due to data capturing and processing. Low-quality data have caused errors in the feature extraction process and reduced identification performance rate in finger vein identification. To address this issue, a new image enhancement and feature extraction methods were developed to improve finger vein identification. The image enhancement, Composite Median-Wiener (CMW) filter would improve image quality and preserve the edges of the finger vein image. Next, the feature extraction method, Hierarchical Centroid Feature Method (HCM) was fused with statistical pixel-based distribution feature method at the feature-level fusion to improve the performance of finger vein identification. These methods were evaluated on public SDUMLA-HMT and FV-USM finger vein databases. Each database was divided into training and testing sets. The average result of the experiments conducted was taken to ensure the accuracy of the measurements. The k-Nearest Neighbor classifier with city block distance to match the features was implemented. Both these methods produced accuracy as high as 97.64% for identification rate and 1.11% of equal error rate (EER) for measures verification rate. These showed that the accuracy of the proposed finger vein identification method is higher than the one reported in the literature. As a conclusion, the results have proven that the CMW filter and HCM have significantly improved the accuracy of finger vein identification

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    CardioCam: Leveraging Camera on Mobile Devices to Verify Users While Their Heart is Pumping

    Get PDF
    With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%

    Finger vein biometric identification using discretization method

    Get PDF
    Over the past years, finger vein identification has gaining increasing attention in biometrics. It has many advantages as compared to other biometrics such as living-body identification, difficult to counterfeit because it resides underneath the finger skin and noninvasiveness. Finger vein feature extraction plays an important role in finger vein identification. The performance of finger vein identification is highly depending on the meaningful extracted features from feature extraction process. However, most of the works focus on how to extract the individual features and not presenting the individual characteristic of finger vein patterns with systematic representation. This paper proposed an improved scheme of finger vein feature extraction method by adopting discretization method. The extracted features will be represented systematically way in order to make classification task easier and increase the identification accuracy rate. The experimental result shows that the accuracy rate of identification of the proposed framework using Discretization is above 98.0%

    Handbook of Vascular Biometrics

    Get PDF

    Liveness Detection on Fingers Using Vein Pattern

    Get PDF
    Tato práce se zabývá rozšířením snímače otisků prstů Touchless Biometric Systems 3D-Enroll o jednotku detekce živosti prstu na základě žil. Bylo navrhnuto a zkonstruováno hardwarové řešení s využitím infračervených diod. Navržené softwarové řešení pracuje ve dvou různých režimech: detekce živosti na základě texturních příznaků a verifikace uživatelů na základě porovnávání žilních vzorů. Datový soubor obsahující přes 1100 snímků jak živých prstů tak jejich falsifikátů vznikl jako součást této práce a výkonnost obou zmíněných režimů byla vyhodnocena na tomto datovém souboru. Na závěr byly navrhnuty materiály vhodné k výrobě falsifikátů otisků prstů umožňující oklamání detekce živosti pomocí žilních vzorů.This work presents liveness detection extension of the Touchless Biometric Systems 3D-Enroll fingerprint sensor which is based on finger vein pattern. Hardware solution was designed and realized using infrared diodes. Designed software system operates in two different modes: liveness detection based on texture features and user verification using finger vein matching. A dataset containing more than 1,100 images of both real fingers and their falsifications was gathered. Performance of both proposed modes was evaluated using mentioned dataset and suitable materials, that can fool the liveness detection module, were highlighted.

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others
    corecore