23 research outputs found

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Sparse and kernel OPLS feature extraction based on eigenvalue problem solving

    Get PDF
    Orthonormalized partial least squares (OPLS) is a popular multivariate analysis method to perform supervised feature extraction. Usually, in machine learning papers OPLS projections are obtained by solving a generalized eigenvalue problem. However, in statistical papers the method is typically formulated in terms of a reduced-rank regression problem, leading to a formulation based on a standard eigenvalue decomposition. A first contribution of this paper is to derive explicit expressions for matching the OPLS solutions derived under both approaches and discuss that the standard eigenvalue formulation is also normally more convenient for feature extraction in machine learning. More importantly, since optimization with respect to the projection vectors is carried out without constraints via a minimization problem, inclusion of penalty terms that favor sparsity is straightforward. In the paper, we exploit this fact to propose modified versions of OPLS. In particular, relying on the ℓ1 norm, we propose a sparse version of linear OPLS, as well as a non-linear kernel OPLS with pattern selection. We also incorporate a group-lasso penalty to derive an OPLS method with true feature selection. The discriminative power of the proposed methods is analyzed on a benchmark of classification problems. Furthermore, we compare the degree of sparsity achieved by our methods and compare them with other state-of-the-art methods for sparse feature extraction.This work was partly supported by MINECO projects TEC2011-22480 and PRIPIBIN-2011-1266.Publicad

    Kernel Feature Extraction Methods for Remote Sensing Data Analysis

    Get PDF
    Technological advances in the last decades have improved our capabilities of collecting and storing high data volumes. However, this makes that in some fields, such as remote sensing several problems are generated in the data processing due to the peculiar characteristics of their data. High data volume, high dimensionality, heterogeneity and their nonlinearity, make that the analysis and extraction of relevant information from these images could be a bottleneck for many real applications. The research applying image processing and machine learning techniques along with feature extraction, allows the reduction of the data dimensionality while keeps the maximum information. Therefore, developments and applications of feature extraction methodologies using these techniques have increased exponentially in remote sensing. This improves the data visualization and the knowledge discovery. Several feature extraction methods have been addressed in the literature depending on the data availability, which can be classified in supervised, semisupervised and unsupervised. In particular, feature extraction can use in combination with kernel methods (nonlinear). The process for obtaining a space that keeps greater information content is facilitated by this combination. One of the most important properties of the combination is that can be directly used for general tasks including classification, regression, clustering, ranking, compression, or data visualization. In this Thesis, we address the problems of different nonlinear feature extraction approaches based on kernel methods for remote sensing data analysis. Several improvements to the current feature extraction methods are proposed to transform the data in order to make high dimensional data tasks easier, such as classification or biophysical parameter estimation. This Thesis focus on three main objectives to reach these improvements in the current feature extraction methods: The first objective is to include invariances into supervised kernel feature extraction methods. Throughout these invariances it is possible to generate virtual samples that help to mitigate the problem of the reduced number of samples in supervised methods. The proposed algorithm is a simple method that essentially generates new (synthetic) training samples from available labeled samples. These samples along with original samples should be used in feature extraction methods obtaining more independent features between them that without virtual samples. The introduction of prior knowledge by means of the virtual samples could obtain classification and biophysical parameter estimation methods more robust than without them. The second objective is to use the generative kernels, i.e. probabilistic kernels, that directly learn by means of clustering techniques from original data by finding local-to-global similarities along the manifold. The proposed kernel is useful for general feature extraction purposes. Furthermore, the kernel attempts to improve the current methods because the kernel not only contains labeled data information but also uses the unlabeled information of the manifold. Moreover, the proposed kernel is parameter free in contrast with the parameterized functions such as, the radial basis function (RBF). Using probabilistic kernels is sought to obtain new unsupervised and semisupervised methods in order to reduce the number and cost of labeled data in remote sensing. Third objective is to develop new kernel feature extraction methods for improving the features obtained by the current methods. Optimizing the functional could obtain improvements in new algorithm. For instance, the Optimized Kernel Entropy Component Analysis (OKECA) method. The method is based on the Independent Component Analysis (ICA) framework resulting more efficient than the standard Kernel Entropy Component Analysis (KECA) method in terms of dimensionality reduction. In this Thesis, the methods are focused on remote sensing data analysis. Nevertheless, feature extraction methods are used to analyze data of several research fields whereas data are multidimensional. For these reasons, the results are illustrated into experimental sequence. First, the projections are analyzed by means of Toy examples. The algorithms are tested through standard databases with supervised information to proceed to the last step, the analysis of remote sensing images by the proposed methods

    Regularized multivariate analysis framework for interpretable high-dimensional variable selection

    Get PDF
    Multivariate Analysis (MVA) comprises a family of well-known methods for feature extraction which exploit correlations among input variables representing the data. One important property that is enjoyed by most such methods is uncorrelation among the extracted features. Recently, regularized versions of MVA methods have appeared in the literature, mainly with the goal to gain interpretability of the solution. In these cases, the solutions can no longer be obtained in a closed manner, and more complex optimization methods that rely on the iteration of two steps are frequently used. This paper recurs to an alternative approach to solve efficiently this iterative problem. The main novelty of this approach lies in preserving several properties of the original methods, most notably the uncorrelation of the extracted features. Under this framework, we propose a novel method that takes advantage of the,2,1 norm to perform variable selection during the feature extraction process. Experimental results over different problems corroborate the advantages of the proposed formulation in comparison to state of the art formulations.This work has been partly supported by MINECO projects TEC2013-48439-C4-1-R, TEC2014-52289-R and TEC2016-75161-C2-2-R, and Comunidad de Madrid projects PRICAM P2013/ICE-2933 and S2013/ICE-2933

    Nonnegative OPLS for supervised design of filter banks: application to image and audio feature extraction

    Get PDF
    Audio or visual data analysis tasks usually have to deal with high-dimensional and nonnegative signals. However, most data analysis methods suffer from overfitting and numerical problems when data have more than a few dimensions needing a dimensionality reduction preprocessing. Moreover, interpretability about how and why filters work for audio or visual applications is a desired property, especially when energy or spectral signals are involved. In these cases, due to the nature of these signals, the nonnegativity of the filter weights is a desired property to better understand its working. Because of these two necessities, we propose different methods to reduce the dimensionality of data while the nonnegativity and interpretability of the solution are assured. In particular, we propose a generalized methodology to design filter banks in a supervised way for applications dealing with nonnegative data, and we explore different ways of solving the proposed objective function consisting of a nonnegative version of the orthonormalized partial least-squares method. We analyze the discriminative power of the features obtained with the proposed methods for two different and widely studied applications: texture and music genre classification. Furthermore, we compare the filter banks achieved by our methods with other state-of-the-art methods specifically designed for feature extraction.This work was supported in parts by the MINECO projects TEC2013-48439-C4-1-R, TEC2014-52289-R, TEC2016-75161-C2-1-R, TEC2016-75161-C2-2-R, TEC2016-81900-REDT/AEI, and PRICAM (S2013/ICE-2933)

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Multi-Label Dimensionality Reduction

    Get PDF
    abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.Dissertation/ThesisPh.D. Computer Science 201

    Graph Embedding via High Dimensional Model Representation for Hyperspectral Images

    Full text link
    Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes, as well as to encapsulate the high dimensionality in a reduced set of informative features for subsequent classification, regression, or unmixing. Manifold learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to project out-of-sample samples into the latent space. The proposed method is compared to manifold learning methods along with its linear counterparts and achieves promising performance in terms of classification accuracy of a representative set of hyperspectral images.Comment: This is an accepted version of work to be published in the IEEE Transactions on Geoscience and Remote Sensing. 11 page

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given
    corecore