231 research outputs found

    Automatic Speech Recognition Using LP-DCTC/DCS Analysis Followed by Morphological Filtering

    Get PDF
    Front-end feature extraction techniques have long been a critical component in Automatic Speech Recognition (ASR). Nonlinear filtering techniques are becoming increasingly important in this application, and are often better than linear filters at removing noise without distorting speech features. However, design and analysis of nonlinear filters are more difficult than for linear filters. Mathematical morphology, which creates filters based on shape and size characteristics, is a design structure for nonlinear filters. These filters are limited to minimum and maximum operations that introduce a deterministic bias into filtered signals. This work develops filtering structures based on a mathematical morphology that utilizes the bias while emphasizing spectral peaks. The combination of peak emphasis via LP analysis with morphological filtering results in more noise robust speech recognition rates. To help understand the behavior of these pre-processing techniques the deterministic and statistical properties of the morphological filters are compared to the properties of feature extraction techniques that do not employ such algorithms. The robust behavior of these algorithms for automatic speech recognition in the presence of rapidly fluctuating speech signals with additive and convolutional noise is illustrated. Examples of these nonlinear feature extraction techniques are given using the Aurora 2.0 and Aurora 3.0 databases. Features are computed using LP analysis alone to emphasize peaks, morphological filtering alone, or a combination of the two approaches. Although absolute best results are normally obtained using a combination of the two methods, morphological filtering alone is nearly as effective and much more computationally efficient

    Performance Analysis of Advanced Front Ends on the Aurora Large Vocabulary Evaluation

    Get PDF
    Over the past few years, speech recognition technology performance on tasks ranging from isolated digit recognition to conversational speech has dramatically improved. Performance on limited recognition tasks in noiseree environments is comparable to that achieved by human transcribers. This advancement in automatic speech recognition technology along with an increase in the compute power of mobile devices, standardization of communication protocols, and the explosion in the popularity of the mobile devices, has created an interest in flexible voice interfaces for mobile devices. However, speech recognition performance degrades dramatically in mobile environments which are inherently noisy. In the recent past, a great amount of effort has been spent on the development of front ends based on advanced noise robust approaches. The primary objective of this thesis was to analyze the performance of two advanced front ends, referred to as the QIO and MFA front ends, on a speech recognition task based on the Wall Street Journal database. Though the advanced front ends are shown to achieve a significant improvement over an industry-standard baseline front end, this improvement is not operationally significant. Further, we show that the results of this evaluation were not significantly impacted by suboptimal recognition system parameter settings. Without any front end-specific tuning, the MFA front end outperforms the QIO front end by 9.6% relative. With tuning, the relative performance gap increases to 15.8%. Finally, we also show that mismatched microphone and additive noise evaluation conditions resulted in a significant degradation in performance for both front ends
    • …
    corecore