2,621 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    An exploration into the sparse representation of spectra

    Get PDF
    Includes bibliographical references (leaves 73-76)This thesis describes an exploration in achieving sparse representations of object, with special focus on spectral data. Given a database of objects one would like to know the actual aspects of each class that distinguish it from any other class in the database. We explore the hypothesis that simple abstractions (descriptions) that humans normally make, especially based on the visual phenomenology or physics on the problem, can be helpful in extracting and formulating useful sparse representations of the observed objects. In this thesis we focus on the discovery of such underlying features, employing a number of recent methods from machine learning. Firstly we find that an approach to automatic feature discovery recently proposed in the literature (Non Negative Matrix Factorization) is not as it seems. We show the limitations of this approach and demonstrate a more efficient method on a synthetic problem. Secondly we explore a more empirical approach to extracting visually attractive features of spectra from which we formulate simple re-representation of spectral data and show that the identification and discovery of certain intuitive features at various scales can be sufficient to describe a spectrum profile. Finally we explore a more traditional and principled automatic method of analyzing a spectrum at different resolutions (Wavelets). We find that certain classes of spectra can easily be discriminated between by a simple approximation of the spectrum profile while in other cases only the finer profile details are important. Throughout this thesis we employ a measure called the separability index as our measure of how easy it is to discriminate objects in a database with the proposed representations

    Multi-scale Discriminant Saliency with Wavelet-based Hidden Markov Tree Modelling

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between centre and surround classes. Discriminant power of features for the classification is measured as mutual information between distributions of image features and corresponding classes . As the estimated discrepancy very much depends on considered scale level, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden Markov Tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, a saliency value for each square block at each scale level is computed with discriminant power principle. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multi-scale discriminant saliency (MDIS) method against the well-know information based approach AIM on its released image collection with eye-tracking data. Simulation results are presented and analysed to verify the validity of MDIS as well as point out its limitation for further research direction.Comment: arXiv admin note: substantial text overlap with arXiv:1301.396

    Rotate vector (Rv) reducer fault detection and diagnosis system: towards component level prognostics and health management (phm).

    Get PDF
    In prognostics and health management (PHM), the majority of fault detection and diagnosis is performed by adopting segregated methodology, where electrical faults are detected using motor current signature analysis (MCSA), while mechanical faults are detected using vibration, acoustic emission, or ferrography analysis. This leads to more complicated methods for overall fault detection and diagnosis. Additionally, the involvement of several types of data makes system management difficult, thus increasing computational cost in real-time. Aiming to resolve that, this work proposes the use of the embedded electrical current signals of the control unit (MCSA) as an approach to detect and diagnose mechanical faults. The proposed fault detection and diagnosis method use the discrete wavelet transform (DWT) to analyze the electric motor current signals in the time-frequency domain. The technique decomposes current signals into wavelets, and extracts distinguishing features to perform machine learning (ML) based classification. To achieve an acceptable level of classification accuracy for ML-based classifiers, this work extends to presenting a methodology to extract, select, and infuse several types of features from the decomposed wavelets of the original current signals, based on wavelet characteristics and statistical analysis. The mechanical faults under study are related to the rotate vector (RV) reducer mechanically coupled to electric motors of the industrial robot Hyundai Robot YS080 developed by Hyundai Robotics Co. The proposed approach was implemented in real-time and showed satisfying results in fault detection and diagnosis for the RV reducer, with a classification accuracy of 96.7%
    • …
    corecore